Как работают жабры

Человечество давно мечтает обуздать стихию воды, иметь возможность полноценно слиться с её средой без применения обременяющей габаритной техники. Наш организм не способен вести подводную жизнь в силу своего анатомического строения, но учёные не один десяток лет бьются над задачей создания средства, которое бы позволило в прямом смысле чувствовать себя, как рыба в воде. Пока это с успехом удалось лишь доктору Сальваторе, пересадившему парню акульи жабры, и то лишь в вымышленном мире писателя-фантаста Александра Беляева.

Покорители же водных глубин в реальной жизни вынуждены таскать за собой тяжёлые и совершенно некомпактные баллоны кислорода, без которых никак не обойтись, потому как жабрами, к сожалению, или к счастью, наши тела не оснащены.

Веяния новых технологий всех сфер жизни человека подталкивают разработчиков к стремлению совершить инновационный прорыв и в области оборудования для дайверов. Сравнительно недавно на весь интернет шумела новость о том, что первые искусственные жабры для подводного плавания всё-таки созданы шведскими и южнокорейскими разработчиками.

Реализованный проект вызвал большое количество споров, неоднозначных комментариев и сомнений по поводу безопасности такого девайса.

Искусственные жабры Triton


За основу принципа действия маски разработчики взяли дыхательную систему рыб. Технология, имитирующая работу жабр, позволяет извлекать кислород непосредственно из воды.

Глубина погружения с прибором не должна превышать 4.5 метра, если заплыть глубже, устройство оповестит о недопустимости более глубокого ныряния. Кроме того, если проигнорировать сигналы прибора, дышать станет крайне затруднительно.

Микропористый фильтр, имитирующий жабры, извлекает кислород из воды, отправляя его микрокомпрессору, который сжимает молекулы для содержания в резервуарах. Впоследствии с камеры кислород, преобразованный в воздух, уже может поступать к лёгким дайвера. Вода в микропоры не просачивается, потому как размеры её молекул больше, чем трубочки фильтров.

Компрессор маски питается от маленькой литий-ионной батареи, заряда которой хватает до 45 минут. Перед тем как время пребывания в воде подойдёт к критичной отметке, устройство сигнализирует об этом человеку вибрациями и светодиодным индикатором.

Корпус прибора довольно компактный, что придаёт дайверу максимальную манёвренность. Конечно, по габаритам можно даже и не сравнивать маску с неповоротливыми баллонами акваланга, которые каждый дайвер мечтает сменить на что-нибудь более миниатюрное.

Маска Triton может использоваться как при пресной, так и солёной воде. После морской воды необходимо просто сполоснуть девайс от соли.

Заявленная разработчиками стоимость изделия на платформе 300 долларов.

Реальность применения


Разработчики обещают навсегда забыть о громоздких баллонах с выходом в свет инновационного решения. Оптимизму создателей можно только позавидовать, их смелые заявления по поводу первого во всём мире подобного концепта устройства не имеют под собой твёрдой почвы. Нечто подобное учёные пытались создать достаточно давно, хотя по габаритам все устройства, имитирующие рыбье дыхание, были просто огромны. Всё же лучше аквалангов по практичности применения и надёжности ещё ничего не придумали.

Во-первых, дышать одним лишь кислородом нельзя в принципе, а функцией подмешивания к нему азота девайс не оснащён. Отсюда следует и ограничение глубины погружения, что для большинства дайверов является явным недостатком.

Во-вторых, безопасность прибора достаточно сомнительна. К тому же, где гарантия, что функция оповещения о недопустимой глубине или исходе заряда батареи не выйдет из строя в процессе заплыва, или другие части механизма не дадут сбой? Ведь от внезапной поломки не застрахован ни один девайс.


Не факт, что профессионалы кинутся сейчас менять акваланг на подобные игрушки. Но, возможно, не за горами нечто более грандиозное, что позволит человеку действительно плавать, как рыба в воде. Океан всегда был непостижимой загадкой для человечества, а уж погружаться в воду на неограниченный срок и вовсе фантастическая мечта, но двигаться в этом направлении, совершенствуя предыдущие разработки, учёные не перестают.

aktsport.ru

Органы дыхания рыб

как дышит рыба Основным органом дыхания рыб являются жабры. Они располагаются возле головы в жаберной полости. Это парный орган. К тому же они очень нежны, поэтому для защиты их прикрывает сверху жаберная крышка. Но все ли жабры имеют одинаковое строение? Конечно же, нет. У разных групп рыб оно разное. Например, у круглоротых жабры мешковидные, а у хрящевых, например акул, они пластинчатые. А вот у самой большой группы – костистых рыб — жабры гребенчатые. Они имеют самое сложное строение. Также очень интересный факт: в отличие от всех других костистые рыбы «дышат» через рот. А вот у круглоротых миксин и хрящевых скатов вода с кислородом поступает снаружи. В процессе эволюции органы дыхания рыб постоянно усложнялись и усовершенствовались. Большинство рыб дышит кислородом, растворенным в воде, но есть и исключения, те, что могут использовать и воздух.

Двоякодышащие рыбы


двоякодышащие рыбы дышат Двоякодышащие рыбы дышат так же, как и все остальные виды. Но есть у них одна интересная особенность. Эта весьма древняя группа рыб имеет не только жаберное, но еще и легочное дыхание. Когда-то эти виды были широко распространены на Земле. Сейчас существует только один отряд – рогозубообразные. Они встречаются в Австралии, Африке и Южной Америке. В качестве органов для осуществления легочного дыхания у этих рыб есть один или два (в зависимости от вида) пузыря. Они расположены на пищеводе с брюшной стороны. Это и позволяет двоякодышащим долгое время находиться в обедненных кислородом водоемах, там, где другие рыбы выжить просто не могут.

Органы дыхания круглоротых

органы дыхания рыб На заре появления рыб, пожалуй, первыми, у кого развились, пусть и не самые сложные, но все же жабры, являются круглоротые. Это даже не совсем рыбы. Миноговые (круглоротые) появились значительно раньше и являются отдельным отрядом бесчелюстные. Их органы дыхания представлены жаберными мешками. Они имеют энтодермальное происхождение и возникли в результате отделения от глотки.
к дышит рыба минога с их помощью? У нее есть семь парных жаберных мешков, в каждом из них по два отверстия. Первое называется наружным, а второе – внутренним, оно ведет в дыхательную трубку. К тому же это отверстие может постоянно открываться и закрываться. Сама дыхательная трубка сформировалась в результате деления глотки. Верхняя ее часть стала пищеварительной, а нижняя – дыхательной. У большинства миноговых наружные жаберные отверстия объединены в один канал. Он открывается чуть дальше последнего жаберного мешка. У миног и миксин носовое отверстие соединено с глоткой. Поэтому, даже когда рыба зарывается в песок, она может дышать. Когда круглоротые питаются, то вода проникает в жаберные мешки не через ротовую или носовую полость, а через наружные жаберные отверстия.

Строение жаберного аппарата костистых рыб

как дышат рыбы под водой Костистые рыбы дышат жабрами. Они имеют сложное строение. Итак, жаберный аппарат состоит из пяти жаберных дуг. Они находятся в специальной полости за головой. Для того чтобы защитить дуги от механических повреждений, их сверху покрывает твердая и прочная жаберная крышка. Она растет по мере увеличения рыбы в размерах. Жаберные дуги на внешней стороне имеют два ряда лепестков, которые поддерживаются опорными хрящами. В них происходит процесс газообмена. К жаберным лепесткам подходит артерия и приносит артериальную кровь. Здесь она обогащается кислородом и разносит его ко всем органам и тканям. С внутренней стороны находятся жаберные тычинки. Они выполняют роль фильтра и защищают от попадания пищевых частичек.

Как дышит рыба в воде?


рыбы дышат жабрами Дыхание рыб происходит следующим образом. При вдохе она открывает широко ротовое отверстие. При этом жаберные дуги максимально раздвигаются, а жаберная крышка, напротив, плотно прижимается к голове. Таким образом, вода попадает в ротовое отверстие и проходит дальше, но не выходит наружу. Далее, в жаберной полости происходит поглощение кислорода через лепестки. Окисленная кровь, подходя к ним, насыщается. Обогатившись кислородом, она несет его ко всем тканям рыбы. При выдохе ротовое отверстие рыбы закрывается, а жаберные крышки приподнимаются. Таким образом, вода выдавливается наружу. В капиллярах лепесточков на жаберных дугах происходит не только газовый, но и водно-солевой обмен. В воду из кровеносных сосудов выделяется не только углекислый газ, но и аммиак и прочие вещества, которые вырабатываются в ходе метаболизма. Это подробное описание того, как дышат рыбы под водой.

Дополнительные органы дыхания

Но как и у большинства видов, обитающих на Земле, у рыб есть дополнительные органы дыхания. Конечно, главными остаются жабры.
помимо них, в процессе газообмена участвуют кожа, кишечник и даже специальные органы, такие как легочные мешочки или «лабиринт». Но обо всем этом стоит рассказать по порядку. У многих видов рыб, в особенности у тех, что в качестве места обитания выбирают мутные, обедненные кислородом воды, очень интенсивно осуществляется кожное дыхание. Как дышит рыба кожей? Она просто поглощает кислород через ее поверхность. Иногда такое дыхание даже выходит на первое место. Еще одно приспособление — плавательный пузырь. В нем скапливается воздух, и рыба поглощает кислород из него. Так она может даже некоторое время прожить вне воды. Такую же роль, как и плавательный пузырь, может выполнять и кишечник. У лабиринтовых рыб в жаберной полости есть специальный карманообразный отдел. Его стенки густо пронизаны капиллярами. В них происходят процессы газообмена. Примечательно, что лабиринтовые рыбы дышат атмосферным кислородом. Они могут обойтись без воды в течение нескольких дней. Конечно, это далеко не все примеры того, как удивительно приспосабливаются к окружающей среде разные виды рыб. У них есть еще много секретов, как выжить даже в очень тяжелых условиях.

fb.ru

ЖАБРЫ И ИХ УСТРОЙСТВО


Как работают жабры

Газ, находящийся в пузыре, представляет собой смесь кислорода и азота, иногда в той же самой пропорции, что и в воздухе. Этот газ извлекается из воды посредством жабр во время обычного дыхательного процесса и переносится кровью в плавательный пузырь. Если хорошенько разглядеть рыбьи жабры, приподняв плоские твердые жаберные крышки по обеим сторонам «шеи», можно увидеть перекрывающие друг друга веерообразные ряды жаберных лепестков — красных складок кожи, прикрепленных к костям между жаберными отверстиями. Их красный цвет объясняется наличием множества крохотных кровеносных сосудов, покрытых чрезвычайно тонкими перепонками. Эти перепонки задерживают воду, но пропускают кислород, который проникает в кровь, проходящую через жабры. В то же время отработанный углекислый газ выбрасывается в море. Иными словами, действие жабр в значительной мере сходно с работой легких.

Рыбы прокачивают воду через жабры, попеременно то сжимая, то раздувая жаберные крышки. Отдав в кровь кислород и забрав углекислый газ, вода вытекает через жаберные крышки. Обратно в жабры попасть она не может из-за складок кожи, действующих как предохранительные клапаны. Иногда вместе с водой в жабры попадают посторонние мелкие частицы или организмы. Если они забивают жаберные отверстия, рыба задыхается.


Люди издавна мечтали научиться жить под водой и дышать, как рыбы. В июле 1964 года вслед за подводниками Ж. И. Кусто четыре водолаза ВМФ США по проекту «Силэб» («Морская лаборатория») провели 11 суток под водой, находясь в стальной камере диаметром 12 метров, опущенной на дно моря на глубину около 60 метров близ Бермудских островов. Они работали там, удаляясь от камеры. Один из них, капитан-лейтенант Роберт Томпсон, настолько привык к жизни на глубине 60 метров, что ему даже снилось, будто он может дышать водой. «Мои сны, — рассказывал он, — были настолько правдоподобны, что каждое утро я просыпался с намерением попробовать сделать это». Однажды, когда он отдыхал на коралловом рифе, его обуяло непреодолимое желание сорвать с себя маску и вдохнуть воду. К счастью, он удержался от этого.

В том же году мечта Томпсона оказалась близкой к осуществлению: доктор Уолтер Л. Робб, инженер-химик, изобрел искусственные жабры, с помощью которых хомяк мог дышать под водой. Эти жабры были изготовлены из чрезвычайно тонкой (0,0025 миллиметра) резиновой мембраны.
а была натянута на рамку и в виде клетки опущена под воду. Мембрана позволяла молекулам кислорода и азота, растворенным в воде, просачиваться внутрь достаточно быстро, обеспечивая зверьку жизнь и безопасность. Выдыхаемый углекислый газ удалялся довольно быстро, так что животному не грозила опасность задохнуться. Внутрь просачивались также и молекулы воды, но гораздо медленнее, чем газы. Соли, растворенные в воде, внутрь не проникали, так как их молекулы слишком велики, поэтому вода была пресной. Хомяк имел в своем распоряжении «воздух», а также питье и как ни в чем не бывало жевал пищу и крутил «беличье колесо».

Этот успешный эксперимент наводит на мысль о поистине фантастических возможностях проведения его в жизнь. Русский писатель-фантаст А. Беляев в своем романе «Человек-амфибия» вложил в уста доктора Сальватора слова о том, что искусственные жабры позволяют разрешить проблему перенаселения, и нарисовал картину «поселений под волнами моря». А пока искусственные жабры не созданы, человек с успехом использует великое изобретение Ж. И.Кусто — акваланг, который дарит удивительное чувство свободы под водой и возможность близко познакомиться с прекрасным подводным миром.

boomerangclub.ru

См. также

  • Жаберные крышки
  • Газообмен
  • Дыхание

dic.academic.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector