Жидкостное дыхание

Ихтиандры среди нас. Российские ученые начали испытывать технологию жидкостного дыхания у подводников. Опыты сейчас пока проходят на собаках. Рекорд дыхания в жидкости — уже 30 минут. Как чудеса из романов и фильмов претворяются в жизнь, выяснял корреспондент «Вестей ФМ» Сергей Гололобов.

Наблюдение за экспериментом. Таксу погружают в ванну с жидкостью мордой вниз. Удивительно, но собака не захлебнулась, а начала дышать той самой жидкостью. Заглатывая её судорожно, рывками. Но ведь дышала. Спустя 15 минут ее вытащили. Собака была вялой, причем, скорее, от переохлаждения, но, главное, живой. А спустя некоторое время и во все пришла в свое обычное игривое настроение. Чудо. Что-то похожее демонстрировалось в знаменитом голливудском фильме «Бездна» 1989 года. Там, залив в колбу с водой некие присадки, запускали туда белую крысу. Причем снято все натурально. И крыса действительно дышала якобы под водой.


А хитрость этого эпизода из фильма «Бездна» в том, что крыса дышала не водой как таковой, а некой специальной жидкостью. Именно на этом и основывается технология жидкостного дыхания. Наиболее подходящими веществами для этой цели считаются перфторуглеродные соединения. Они хорошо растворяют в себе кислород и углекислый газ и не приносят вред организму. То есть живые существа вдыхают не воду, а те самые жидкие углероды. Для чего это нужно людям, рассказал врач-пульмонолог, руководитель научной темы по жидкостному дыханию еще с восьмидесятых годов Андрей Филиппенко.

«Это нужня для спасения подводников. При большом давлении, если у них будет в легких жидкость, если они из этой жидкости извлекут кислород, то они смогут выйти на большой глубине, и быстро, без всякой декомпрессионной проблемы подняться к поверхности».

Известно, что выход с больших глубин у водолазов и подводников занимает часы. Если же подниматься на поверхность быстро, то вас настигнет кессонная болезнь. Попадающие с дыхательной смесью в кровь пузырьки азота вскипают из-за резкого перепада давления и разрушают сосуды. Если использовать аппарат со специальной дыхательной жидкостью, таких проблем не возникнет, поясняет Андрей Филиппенко.


«Фторуглеродная жидкость является носителем, так сказать, азот-кислорода, то есть переносчиком. Но в отличие от азота, который переходит в ткань организма при большом давлении, на глубине, и из-за этого возникает кессонная болезнь, здесь этого нет. То есть нет причин для кессонной болезни. Нет пересыщения инертным газом организма. То есть нет принципиально причин для пузырьков».

Опыты по жидкостному дыханию активно велись, начиная с 60-х, в Советском Союзе и США. Но дальше экспериментов с животными дело не доходило. После развала Союза у нас научный поиск в этом направлении сошел на нет. Но очень мощные наработки остались. И сейчас их решено использовать по новой, говорит Андрей Филиппенко.

«Большой задел по технологии жидкостного дыхания, и по жидкостям. И плюс еще у нас еще есть последствия этих жидкостей. Потому что все вводимые в кровь фторуглероды, а у нас уже 25 лет используется такое вещество, выходят через легкие. То есть мы знаем и последствия влияния на организм введения в него перфторуглеродов. У американцев или французов, англичан таких данных нет».


Недавно российские ученые создали специальную капсулу для собак, которую погружали в гидрокамеру с повышенным давлением. И сейчас собаки могут без последствий для здоровья более получаса дышать на глубине до полукилометра. А вскоре планируется перейти к экспериментам на людях. Самое страшное — это, конечно, заставить себя вдохнуть жидкость, размышляет президент Конфедерации подводной деятельности России Валентин Сташевский:

«Когда воду вдыхаешь, это просто кошмар. Это значит первый путь к тому, чтобы утонуть. Так было по всем историческим предшествующим событиям. Захлебываешься, как только вода попадает в дыхательные пути и так далее».

Тем не менее, желающие стать фактически утопленниками, но при этом начать дышать как человек-амфибия, ну или Садко, у нас есть, отмечает Андрей Филиппенко.

«Добровольцы есть. Но давайте сразу уточним, добровольцами здесь могут быть только те люди, которые очень хорошо понимают, что может произойти. То есть это фактически могут быть только те врачи, которые много занимались жидкостным дыханием. Вот такие в нашей команде есть. И не один. Нужно только правильно всё оорганизовать».

Сейчас работы по жидкостному дыханию переданы в НИИ медицины труда. Основная цель исследований — создать специальный скафандр, который пригодится не только подводникам, но и летчикам, а также космонавтам. Но, повторим, речь идет о дыхании специальными жидкостями. Дышать непосредственно водой, как ихтиандр, пока человеку недоступно.


 

newsae.ru

Дмитрий Рогозин показал сербскому президенту Александру Вучичу новейшие российские разработки. Среди них проект жидкостного дыхания. Для Вучича провели демонстрацию на таксе, которую поместили в резервуар с жидкостью, и уже через несколько секунд в новой среде она задышала. Эта система поможет дышать морякам на затонувшем судне или людям с ожогами легких. Как вообще возможно дышать жидкостью?

Это лишь одна из разработок, которые были созданы при содействии созданного государственного Фонда перспективных исследований. Он специализируется на прорывных исследованиях в различных областях науки и техники.

Чтобы было понятно, почему открытие называют настоящим прорывом. Еще в конце 80-х годов жидкостное дыхание считалось научной фантастикой. Им пользовались герои фильма американского режиссера Джеймса Кэмерона "Бездна". И даже в картине оно называлось экспериментальной разработкой.

Научить человека и животных дышать жидкостью пытались давно. Первые опыты в 60-х были неудачными, подопытные мыши жили очень недолго. На людях технику жидкостной вентиляции легких проверяли один единственный раз в США, для спасения недоношенных детей. Однако ни одного из трех младенцев не удалось реанимировать.


Тогда для доставки кислорода в легкие использовали перфторан, его еще применяют в качестве кровезаменителей. Основной проблемой было то, что эту жидкость не удавалось достаточным образом очистить. В ней плохо растворялся углекислый газ, и для длительного дыхания нужна была принудительная вентиляция легких. В покое мужчина обычной комплекции среднего роста должен был пропускать через себя 5 литров жидкости в минуту, при нагрузках – 10 литров в минуту. Легкие для таких нагрузок не приспособлены. Нашим исследователям удалось эту проблему решить.

"Проблема тех лет в том, что жидкость, которая была предназначена для дыхания, невозможно было очистить достаточным образом. И как следствие, под высоким давлением растворимые в ней побочные вещества вызывали токсический эффект. В семидесятые годы это были в основном перфтораны, они достаточно токсичны. Сейчас – это производные перфтордекалинов. Это вещества, которые используются в косметологической промышленности как прекрасный переносчик лекарственных и иных веществ через кожу в организм для насыщения кожи, в том числе и кислородом", — сказал руководитель направления химико-биологических и медицинских исследований Фонда перспективных исследований Федор Арсеньев.


Возможности, которые дает нынешнее открытие российских ученых, чрезвычайно высоки. Одна из них — борьба с перегрузками. Жидкость равномерно распределяет нагрузку по всем направлениям. Поэтому человек, помещенный в нее, способен выдерживать гораздо более высокие нагрузки, чем просто человек в скафандре. Их переносимость может увеличиться в несколько раз, существенно превысив 20 G, которые сейчас считаются пределом для человеческого организма.

При погружении в воду давление на человека возрастает на одну атмосферу каждые 10 метров. Поэтому на больших глубинах используются очень громоздкие костюмы. Когда легкие человека заполнены не воздухом, а жидкостью, давление внутри тела уравновешивает давление внешнее, и человек может погружаться на большие глубины без специальных костюмов. Кровь при этом не насыщается азотом и гелием, поэтому и не требуется длительной декомпрессии при подъеме на поверхность.

"Открытие поможет непосредственно спасаться экипажам подводных лодок без привлечения спасательных сил, специальных аппаратов – это то, что происходит на кораблях, это время идет на сутки – то, что случилось с "Курском". На больших глубинах с применением этих смесей жидкостных подводники вполне могут подниматься живыми-здоровыми с больших глубин", — отметил капитан 1-го ранга в отставке, заместитель главного редактора журнала Министерства обороны РФ "Воин России" Василий Дандыкин.

Российская разработка найдет применение не только в оборонной отрасли. Ее также можно будет использовать для помощи недоношенным младенцам и людям, получившим ожоги дыхательных путей.

www.vesti.ru

Нужно ли человеку жидкостное дыхание


Не жалеются ни силы, ни время, ни денежные средства на такие исследования. И один из таких вопросов, волнующих самые просвещённые умы на протяжении десятилетий, звучит следующим образом — а возможно ли для человека жидкостное дыхание? Смогут ли лёгкие усваивать кислород не из воздуха, а из специальной жидкости? Для тех, кто усомнится в реальной необходимости такого типа дыхания, можем привести как минимум 3 перспективных направления, где оно послужит человеку добрую службу. Если, конечно же, это смогут реализовать.

  • Первое направление — это погружение на большие глубины. Как известно, при нырянии водолаз испытывает действие давления водной среды, которая в 800 раз плотнее воздуха. И оно возрастает на 1 атмосферу каждые 10 метров глубины. Такое резкое повышение давления чревато очень неприятным эффектом — газы, растворённые в крови, начинают закипать в виде пузырьков. Это явление называют «кессонной болезнью», ею часто страдают те, кто активно занимается погружениями с аквалангом. Также при глубоководных заплывах есть риск получить кислородное или азотное отравление, так как в таких условиях эти жизненно необходимые нам газы становятся очень токсичными. Для того чтобы хоть как-то бороться с этим, используют либо специальные смеси для дыхания, либо жёсткие скафандры, поддерживающие внутри себя давление в 1 атмосферу. Но если бы жидкостное дыхание было возможно — оно бы стало третьим, наиболее лёгким решением проблемы, ведь дыхательная жидкость не насыщает организм азотом и инертными газами, да и необходимость в долгой декомпрессии отпадает.

  • Второй путь применения — это медицина. Применения жидкостей для дыхания в ней могло бы спасать жизни недоношенных младенцев, ведь их бронхи недоразвиты и аппараты искусственной вентиляции лёгких могут легко их повредить. Как известно, в утробе матери лёгкие эмбриона заполнены жидкостью и к моменту рождения у него накапливается лёгочный сурфактант — смесь веществ, не дающая слипаться тканям при дыхании воздухом. Но при досрочном рождении дыхание требует у младенца слишком много сил и это может закончиться летальным исходом.

История имеет прецедент использования метода полной жидкостной вентиляции лёгких, и датируется он 1989 годом. Применил его Т. Шаффер, работавший педиатром в Темпльском университете (США), спасая недоношенных детей от смерти. Увы, попытка успехом не увенчалась, трое маленьких пациентов не выжили, но стоит упомянуть, что смерти были вызваны иными причинами, а не самим методом дыхания жидкостью.

Человек в шаре с жидкостью

С тех пор полностью вентилировать лёгкие человека не осмеливались, но в 90-х годах пациенты с тяжёлой формой воспалений были подвергнуты частичной жидкостной вентиляции. В этом случае лёгкие заполняются лишь частично. Увы, эффективность метода была спорной, так как обычная воздушная вентиляция работала не хуже.


  • Применение в космонавтике. При нынешнем уровне технологий, космонавт при полёте испытывает перегрузки, достигающие 10 g. После этого порога невозможно сохранить не то чтобы работоспособность, но и сознание. Да и нагрузка на организм идёт неравномерно, а по точкам опоры, которые при погружении в жидкость можно исключить — давление будет распространяться одинаково по всем точкам организма. Этот принцип положен в основу проектировки жёсткого скафандра Libelle, наполненного водой и позволяющего повысить предел до 15–20 g, да и то из-за ограничения плотности тканей человека. А если не только погрузить космонавта в жидкость, но и заполнить ею лёгкие, то для него будет возможно легко переносить экстремальные перегрузки далеко за отметкой в 20 g. Не бесконечные, разумеется, но порог будет очень высок, если будет соблюдено одно условие — жидкость в лёгких и вокруг тела должна быть равна по плотности воде.

Зарождение и развитие жидкостного дыхания

Самые первые эксперименты датируются 60-ми годами прошлого столетия. Первыми испытали зарождающуюся технологию жидкостного дыхания лабораторные мыши и крысы, вынужденные дышать не воздухом, а солёным раствором, который был обогащён кислородом под давлением в 160 атмосфер. И они дышали! Но была проблема, которая не дала им выжить в такой среде долго — жидкость не позволяла отводить углекислый газ.


Но на этом эксперименты не прекратились. Далее, начали проводить исследования органических веществ, чьи атомы водорода заменялись атомами фтора — так называемых перфторуглеводородов. Результаты были намного лучше, чем у древней и примитивной жидкости, ведь перфторуглеводород инертен, не усваивается организмом, прекрасно растворяет кислород и водород. Но до совершенства было далеко и исследования в этом направлении продолжились.

Сейчас самым лучшим достижением в этой сфере является перфлуброн (коммерческое название — «Ликвивент»). Свойства этой жидкости поразительны:

  1. Альвеолы раскрываются лучше при попадании в лёгкие этой жидкости и газообмен улучшается.
  2. Эта жидкость может нести в 2 раза больше кислорода по сравнению с воздухом.
  3. Низкая температура кипения позволяет удалять её из лёгких выпариванием.

Но наши лёгкие не предназначены для полностью жидкостного дыхания. Если заполнять их перфлуброном полностью — потребуется мембранный оксигенатор, нагревающий элемент и вентиляция воздухом. И не стоит забывать, что эта смесь в 2 раза гуще воды. Потому применяют смешанное вентилирование, при котором лёгкие заполняются жидкостью лишь на 40%.

Мембранный оксигенатор

Но почему мы не можем дышать жидкостью? Всё из-за углекислого газа, который очень плохо удаляется в жидкостной среде. Человек весом в 70 кг должен прогонять 5 л смеси через себя ежеминутно, и это при спокойном состоянии. Потому, хоть наши лёгкие технически способны извлекать кислород из жидкостей, для продолжительного процесса они слишком слабы. Так что можно лишь надеяться на исследования будущего.

Вода как воздух

Для того чтобы наконец с гордостью объявить миру — «Теперь человек может дышать под водой!» — учёные порой разрабатывали поразительные устройства. Так, в 1976 году биохимики из Америки создали чудо-устройство, способное регенерировать кислород из воды и обеспечивать им ныряльщика. При достаточной ёмкости батарей ныряльщик мог находиться и дышать на глубине практически бесконечно.

А началось всё с того, что ученые начали исследования на основе того факта, что гемоглобин одинаково хорошо доставляет воздух как из жабр, так и из лёгких. Ими была использована собственная венозная кровь, смешанная с полиуретаном — её погружали в воду и эта жидкость поглощала кислород, который щедро растворён в воде. Далее, кровь была заменена спецматериалом и в итоге получился прибор, что действовал как обычные жабры любой рыбёшки. Судьба изобретения такова: его приобрела некая компания, потратив на это 1 миллион долларов, и с тех пор о приборе ничего не было слышно. И в продажу, разумеется, он не поступил.

Но не это является главной целью учёных. Их мечта не устройство для дыхания, они хотят научить самого человека дышать жидкостью. И попытки осуществить эту мечту не оставлены до сих пор. Так, один из НИИ России, например, провёл испытания по жидкостному дыханию на добровольце, имеющем врождённую патологию — отсутствие гортани. А это означало, что у него просто отсутствовала реакция организма на жидкость, при которой попадание малейшей капли воды на бронхи сопровождается сжатием глоточного кольца и удушьем. Так как этой мышцы у него просто не было, эксперимент прошёл удачно. Ему залили в лёгкие жидкость, которую он перемешивал на протяжении эксперимента при помощи движений живота, после чего её спокойно и безопасно откачали. Характерно, что солевой состав жидкости соответствовал солевому составу крови. Это можно считать успехом, и учёные утверждают, что вскоре найдут способ жидкостного дыхания, доступный людям без патологий.

Водолазный костюм с жидким воздухом

Так миф или реальность?

Несмотря на упорство человека, страстно желающего покорить все возможные среды обитания, природа пока сама распоряжается, где кому жить. Увы, как бы много времени ни ушло на исследования, сколько миллионов бы ни потратили — но вряд ли человеку суждено дышать под водой так же хорошо, как и на суше. Люди и морские обитатели, конечно, имеют немало общего, но различий всё-таки намного больше. Человек-амфибия не вынес бы условий океана, а если бы сумел приспособиться — то дорога назад, на сушу, была бы для него закрыта. И как сейчас погружаются с аквалангами водолазы, так бы на пляж выходили бы в водных скафандрах люди-амфибии. И потому, чтобы не говорили энтузиасты, вердикт учёных пока твёрд и неутешителен — долгая жизнедеятельность человека под водой невозможна, идти против матери-природы в этом плане неразумно и все попытки жидкостного дыхания обречены на провал.

Но не стоит унывать. Хоть дно морское никогда не станет для нас родным домом, у нас есть все механизмы организма и технические возможности, для того чтобы бывать на нём частыми гостями. Так стоит ли об этом грустить? Ведь эти среды в определённой мере уже покорены человеком и теперь перед ним лежат бездны космического пространства.

И пока можно с уверенностью сказать, что глубины океана станут для нас прекрасным рабочим местом. Но упорство может привести к очень тонкой грани реального дыхания под водой, стоит лишь трудиться над решением этой задачи. А каков будет ответ на вопрос, менять ли наземную цивилизацию на подводную, зависит только лишь от самого человека.

aktsport.ru

Не знаю, есть ли кто-то, кто не смотрел этот фантастический и уникальный фильм Джеймса Камерона.

Жидкостное дыхание

Я пересматривала его раз 8 точно. И каждый раз делала это исключительно из развлекательной цели и интересного сюжета с потрясающей актерской игрой, которая по свидетельству съемочной группы сильно вымотала исполнителей главных ролей.

А в последний раз я поняла, что в этом фильме есть что-то большее.

На протяжении всего фильма нам рассказывают о дыхании в жидкости. То, с чего мы начинали в утробе матери, может продолжиться. Главное — ситуация.

Все 7 просмотров для меня фильм был лишь фантастикой, игрой воображения сценариста или режиссера. В одной сцене показывают мышку, которая дышит специальной жидкостью. В другой — Бада (герой Эда Харриса) в скафандре, заполненном этой самой жидкостью. Его отправляют на глубину, где никто не был, заполняя его легкие «особой водой», потому что кислороду в теле человека на таких глубинах делать нечего.

 Жидкостное дыхание

И вот после 8 просмотров кино я начала копать. Благодаря «Бездне» и через разные информационные источники я узнала:

— разработав около шестидесяти лет назад акваланг, француз Жак Ив Кусто в его название ввел термин «вода» и «легкие». Однако сама технология полного заполнения легких водой (в виде водно-солевого раствора) стала известна из публикации Kylstra J. «Мышь как рыба» — первой по жидкостному дыханию, в которой сказано о такой идее спасения подводников. Он же первый провел на сухопутных млекопитающих (мышах) спуски на глубину 1000 м и показал, что переход на жидкостное дыхание полностью предотвращает гибель от декомпрессионного газообразования. В СССР это было подтверждено при искусственной вентиляции легких (ИВЛ) жидкостью собак в условиях имитации водолазных спусков на 1000 м. 

 — вся система жидкостного дыхания основана на формуле перфторуглерода. Перфлуброн – это чистая, маслянистая жидкость, обладающая малой плотностью. Она содержит больше кислорода, чем воздух. Поскольку эта жидкость инертна, то она не наносит вреда легким. Так как у нее весьма низкая температура кипения, она быстро и легко выводится из легких;

— на мировом рынке мало производителей этих жидкостей, так как их разработка — побочный продукт «атомных проектов». Известны жидкости медицинского качества всего нескольких мировых фирм: DuPont (США), ICI и F2 (Великобритания), Elf-Atochem (Франция). Перфторуглеродные жидкости, технологически отработанные в Санкт-Петербургском институте прикладной химии, сейчас лидируют в медицине и косметологии;

— в России серьезно и без смешков в курилке задумались о теме свободного всплытия через особую систему жидкостного дыхания после гибели АПЛ «Курск»;

— с момента образования РФ разработка метода жидкостного дыхания для спасения подводников, как и подготовка волонтерских испытаний 2007 года, выполнялась и выполняется без грантов, за счет средств «AVF» в работе с СПб ГМУ им. И.П. Павлова и другими организациями;

— в настоящее время специальный глубоководный водолазный аппарат существует в виде проекта в рамках авторской концепции быстрого спасения подводников. Он базируется на уникальных свойствах быстрых и стойких (к давлению) водолазов жидкостного дыхания;

—  Arnold Lande, бывший хирург, а ныне американский пенсионер-изобретатель, зарегистрировал патент на водолазный костюм, оснащенный баллоном со специальной жидкостью, обогащенной кислородом. Так называемый “жидкий воздух” подается из баллона в шлем дайвера, заполняет собой все пространство вокруг головы, вытесняет воздух из легких, полостей носоглотки и ушей, насыщая легкие человека достаточным количеством кислорода. В свою очередь, углекислый газ, который выделяется в процессе дыхания, выходит наружу при помощи своеобразного подобия жабр, прикрепленных к бедренной вене ныряльщика. То есть сам процесс дыхания становится попросту не нужен – кислород поступает в кровь через легкие, а углекислый газ выводится прямо из крови. Правда, как будет подаваться из баллона эта самая несжимаемая жидкость пока еще не совсем понятно…;

— есть информация о том, что опыты по дыханию в жидкости вовсю проводятся. И в России в том числе;

— в фильме «Бездна», конечно, никто из актеров не дышал «особой водой». И в одной из сцен даже допущен маленький, но очень запоминающийся косяк, когда Бад опускается на глубину, из его рта выходит предательский пузырек,..которого в условиях жидкостного дыхания быть не должно;

— актеру Эду Харрису, сыгравшему одну из главных ролей, роль Бада, как-то по пути со съемок пришлось съехать на обочину из-за приступа непроизвольного плача..Настолько изматывающим был процесс создания фильма. Камерон требовал исключительной правдоподобности.

Смотрите кино. Дышите свободно и съезжайте с обочин только чтобы пофотографировать бабочек.

Спасибо за открытый доступ к некоторым данным члену-корреспонденту РАЕН, к.м.н. А. В. Филиппенко. 

Еще кинодетали: Джим Керри в позе-Т 

 

snob.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector