Измеритель ветра


Принцип функционирования

прибор для измерения скорости ветраНесмотря на разнообразие анемометров, которые отличаются конструктивно, большинство из них работают по принципу определения характера действия воздушного потока на подвижные вращающиеся элементы.

Приборы данной категории способны определять максимальную текущую скорость ветра при дуновении потока в определенном направлении. Отдельные модели выдают показатели объемного расхода воздуха, температуры потока, влажности. Таким образом, функциональный прибор для измерения скорости ветра превращается в портативную метеостанцию.

Типы

Выделяют несколько отдельных разновидностей устройств, способных производить расчет скорости ветра. В настоящее время выделяют следующие типы приборов данного назначения:

  • вращательные;
  • вихревые;
  • тепловые;
  • динамометрические;
  • оптические;
  • ультразвуковые.

Давайте подробно рассмотрим устройства каждого типа, определим их возможности, способы эксплуатации.

Вращательные анемометры

метеорологический приборМетеорологический прибор может быть оснащен чашками либо лопастями, которые играют роль чувствительного элемента. Последние подвижно закрепляются на вертикальном стержне и соединяются с измерителем. Перемещение воздушных потоков заставляет такие вертушки вращаться вокруг оси. По мере движения измерительный механизм фиксирует количество оборотов в течение определенного временного отрезка. Визуальную информацию выдает шкала скорости ветра либо цифровой дисплей.

Конструкции данного типа изобретены достаточно давно. Однако, несмотря на появление более совершенных приборов, вращательные анемометры до сих пор продолжают успешно эксплуатироваться метеорологами по всему миру.

Вихревые анемометры

измерение скорости и направления ветраВ таких приборах измерение скорости и направления ветра происходит за счет воздействия воздушных потоков на легкое лопастное колесо, расположенное в вертикальной плоскости. Как и в предыдущем случае, вращение крыльчатки посредством воздействия на систему зубчатых колес передает данные к счетному механизму.

В настоящее время наиболее распространены ручные вихревые анемометры. Последние используются для измерения скорости воздушных потоков в вентиляционных системах и трубопроводах, устанавливаются в воздуховодах промышленных и жилых объектов.

Тепловые анемометры


Не слишком востребованы тепловые приборы. Чаще всего необходимость в их применении возникает при измерении показателей медленных воздушных потоков.

Функционирует тепловой датчик скорости ветра по принципу измерения температуры нити накаливания либо специальной пластины, на которую оказывается давление воздуха. При различных показателях потока выделяется определенное количество энергии, которое позволяет поддерживать ту или иную температуру теплового элемента. Таким нехитрым способом и определяется скорость ветра.

Динамометрические анемометры

датчик скорости ветраПрибор для измерения скорости ветра может также функционировать благодаря определению показателей давления ветрового потока в средине запаянной с одной стороны Г-образной трубки. Данные получают на основе сравнения избыточного воздушного давления снаружи и внутри элемента.

Динамометрический прибор для измерения скорости ветра применяется не только в метеорологии. Устанавливаются подобные устройства вентиляционных системах и газоходах, где вычисляют объемный расход потоков и их скорость.

Ультразвуковые анемометры


Принцип функционирования устройств данной категории основывается на определении скорости звука на приемнике в зависимости от показателей потока воздушных масс. Здесь представлены наиболее высокоточные, современные устройства, которые также позволяют фиксировать направление ветровых потоков.

Выделяют трехмерные и двухмерные ультразвуковые приборы. Первые дают возможность получать показатели направления перемещения потоков в трех компонентах. В свою очередь, двухмерный метеорологический прибор позволяет измерять направление и скорость ветра лишь в горизонтальной плоскости. Некоторые ультразвуковые системы производят вычисления температуры воздушных потоков.

Оптические анемометры

расчет скорости ветраУченые-физики, инженеры, задействованные в космических программах, часто прибегают к применению лазерных оптических приспособлений для измерения скорости и направления перемещения воздушных потоков. Работают подобные устройства согласно определению зависимости рассеянного либо отраженного подвижным объектом света от его скорости. Данный способ не предполагает непосредственного воздействия газообразных, твердых либо жидких веществ на элементы измерительного устройства.

Сфера применения оптических анемометров крайне широка, начиная с определения направлений перемещения веществ в живых клетках и капиллярах и заканчивая вычислением скорости движения газов в атмосфере.


Эксплуатация лазерных устройств помогает с высокой точностью рассчитывать скорость воздушных потоков вокруг подвижных объектов, в частности, автотранспорта, летательных аппаратов, космических тел. Полученные расчеты дают возможность исследователям, инженерам и механикам разрабатывать наиболее аэродинамические формы при конструировании техники.

Советы по выбору

шкала скорости ветраНа что следует обращать внимание при выборе прибора для измерения скорости и направления перемещения воздушных потоков? Определяющее значение здесь имеет перечень задач, что поставлены перед пользователем. В зависимости от этого, значение имеют такие технические характеристики прибора:

  • максимальный измерительный диапазон;
  • величина погрешностей;
  • возможность применения в тех или иных температурных условиях;
  • уровень безопасности для пользователя при воздействии на устройство агрессивных факторов окружающей среды;
  • тип: стационарный либо переносной прибор;
  • степень защищенности механизма от воздействий атмосферных осадков;
  • характер питания устройства и способ формирования данных;
  • габариты прибора;
  • возможность вычисления показателей в ночное время суток (наличие подсветки).

В настоящее время для работы в условиях крайне пониженных температур возможно использование метеорологических приборов с подогревателями. Для рудников и шахт применяют специализированные анемометры, что способны исправно функционировать при высокой запыленности окружающего пространства и во взрывоопасной среде. Такие функциональные приборы переносят воздействие повышенной влажности и остаются работоспособными при значительных перепадах температур.

В итоге

Как видно, в зависимости от личных потребностей, имеется возможность выбрать наиболее подходящее устройство для фиксации показателей воздушных потоков. Однако здесь имеются свои сложности. Поскольку все анемометры являются измерительными приборами, они подлежат сертификации и аттестации в соответствующих государственных учреждениях.

fb.ru

Конструкции датчиков

Преимущество механических датчиков в том, что никакие НИиОКР там не требуются, принцип прост и понятен, а качество результата зависит только от аккуратности исполнения тщательно продуманной конструкции.

Так казалось теоретически, на практике это вылилось в кучу механических работ, часть из которых пришлось заказывать на стороне, ввиду отсутствия под рукой токарного и фрезерного станков. Сразу скажу, что я ни разу не пожалел о том, что с самого начала сделал ставку на капитальный подход, а не стал городить конструкции из подручных материалов.

Для флюгера и анемометра нужны следующие детали, которые пришлось заказать у токаря и фрезеровщика (количество и материал указаны сразу для обоих датчиков):


image
Оси, заметим, обязательно вытачиваются на токарном станке: изготовить на коленке ось с острием точно по центру практически невозможно. А размещение острия точно по оси вращения здесь — определяющий фактор успеха. Кроме того, ось должна быть идеально прямой, никакие отклонения не допускаются.

Механический датчик направления ветра — электронный флюгер

Основой флюгера (как и датчика скорости далее) служит П-образная скоба из дюраля Д-16, изображенная на чертеже вверху слева. В нижнее углубление запрессовывается кусочек фторопласта, в котором делается ступенчатое углубление последовательно сверлами 2 и 3 мм. В это углубление острым концом вставляется ось (для флюгера — из латуни). Сверху она свободно проходит через отверстие 8 мм. Над этим отверстием винтами М2 к скобе прикрепляется прямоугольный кусочек того же фторопласта толщиной 4 мм так, чтобы он перекрывал отверстие. Во фторопласте сделано отверстие точно по диаметру оси 6 мм (расположенное точно по общей оси отверстий — см. сборочный чертеж ниже). Фторопласт вверху и внизу здесь играет роль подшипников скольжения.


image
Ось в месте трения о фоторопласт можно отполировать, а площадь трения уменьшить, отзенковав отверстие во фторопласте. (См. на эту тему ниже UPD от 13.09.18). Для флюгера это не играет особой роли — некоторая «заторможенность» ему даже полезна, а для анемометра придется постараться минимизировать трение и инерцию.

Теперь о съеме величины угла поворота. Классический энкодер Грея на 16 положений применительно к нашему случаю выглядит так, как показано на рисунке:
image
Размер диска был выбран, исходя из условия надежной оптической изоляции пар излучатель-приемник друг от друга. При такой конфигурации щели шириной 5 мм располагаются с промежутком также 5 мм, а оптические пары расположены на расстоянии ровно 10 мм. Размеры скобы, к которой крепится флюгер, были рассчитаны именно исходя из диаметра диска 120 мм. Все это, конечно, можно уменьшить (особенно, если подобрать светодиоды и фотоприемники как можно меньшего диаметра), но было принята во внимание сложность изготовления энкодера: выяснилось, что фрезеровщики за такую тонкую работу не берутся, потому его пришлось выпиливать вручную надфилем. А тут чем больше размеры, тем надежнее результат и меньше хлопот.

На сборочном чертеже выше показано крепление диска к оси. Тщательно отцентрованный диск крепится винтиками М2 к капролоновой втулке. Втулка размещается на оси так, чтобы зазор вверху был минимальным (1-2 мм) — так, чтобы ось в нормальном положении вращалась свободно, а при перевороте острие не выпадало из гнезда внизу. Блоки фотоприемников и излучателей прикрепляются к скобе сверху и снизу диска, более конкретно об их конструкции далее.


Вся конструкция помещается в пластиковый (АБС или поликарбонат) корпус 150×150×90 мм. В собранном виде (без крышки и флюгера) датчик направления выглядит следующим образом:

image

Отметьте, что выбранное направление на север помечено стрелкой, его нужно будет соблюдать при установке датчика на место.

На верхушку оси крепится собственно флюгер. Он изготовлен на основе такой же латунной оси, в разрез на тупой стороне которой впаивается хвостовик из листовой латуни. На остром конце на некоторую длину нарезается резьба М6, и на ней с помощью гаек закрепляется круглый груз-противовес, отлитый из свинца:

image

Груз рассчитан так, чтобы центр тяжести приходился точно на место крепления (передвигая его вдоль резьбы, можно добиться идеальной балансировки). Крепление флюгера к оси осуществляется с помощью нержавеющего винта М3, который проходит через отверстие в оси флюгера и ввинчивается в резьбу, нарезанную в оси вращения (крепящий винт виден на фото выше). Для точной ориентации верхушка оси вращения имеет полукруглое углубление, в которое ложится ось флюгера.


Датчик скорости ветра — чашечный анемометр своими руками

Как вы уже поняли, основа для датчика скорости в целях унификации была выбрана та же самая, что и для флюгера. Но требования к конструкции тут несколько иные: в целях снижения порога трогания анемометр должен быть максимально облегчен. Поэтому, в частности, ось для него сделана из дюраля, диск с отверстиями (для измерения частоты вращения) уменьшен в диаметре:

image

Если для четырехбитного энкодера Грея требуется четыре оптопары, то для датчика скорости всего одна. По окружности диска на равном расстоянии просверлено 16 отверстий, таким образом один оборот диска в секунду эквивалентен 16 герцам частоты, поступающей с оптопары (можно больше отверстий, можно меньше — вопрос только в масштабе пересчета и экономии энергии на излучатели).

Самодельный датчик все равно получится достаточно грубым (порог трогания не менее полуметра-метра в секунду), но его снизить можно только если радикально изменить конструкцию: например, вместо чашечной вертушки поставить пропеллер. У чашечной вертушки разность сил сопротивления потоку, обуславливающая крутящий момент, относительно невелика — она достигается исключительно за счет разной формы поверхности, встречающей набегающий поток воздуха (поэтому форма чашек должна быть как можно более обтекаемой — в идеале это половинка яйца или шара). У пропеллера вращающий момент гораздо больше, его можно сделать гораздо меньшим по весу, и, наконец, само изготовление проще. Но пропеллер нужно устанавливать по направлению потока воздуха — например, разместив его на конце того же флюгера.


Вопрос вопросов при этом: как передавать показания с датчика, хаотично вращающегося вокруг вертикальной оси? Я его решить не смог, и судя по тому, что профессиональные чашечные конструкции до сих пор широко распространены, решается он отнюдь не с полпинка (ручные анемометры в расчет не берем — их ориентируют по потоку воздуха вручную).

Мой вариант чашечного анемометра сделан на основе лазерного диска. Вид сверху и снизу показан на фото:

image
image

Чашки сделаны из донышек от бутылочек из-под детской воды «Агуша». Донышко аккуратно отрезается, причем все три — на одинаковом расстоянии, чтобы имели равный вес, локально прогревается по центру (ни в коем случае не грейте целиком — необратимо покоробится!) и тыльной стороной деревянной ручки от напильника выгибается наружу, чтобы сделать его более обтекаемым. Будете повторять — запаситесь бутылочками побольше количеством, из пяти-шести штук вам, вероятно, удастся сделать три более-менее одинаковых чашки. В изготовленных чашках делается сбоку прорезь и они закрепляются по периметру диска под 120° по отношению друг к другу с помощью водостойкого клея-герметика. Диск строго центруется относительно оси (я это делал с помощью вложенной металлической шайбы) и закрепляется на капролоновой втулке винтами М2.

Общая конструкция и установка датчиков

Оба датчика, как уже говорилось, размещаются в пластиковых корпусах 150×150×90 мм. К выбору материала корпуса надо подходить продуманно: АБС или поликарбонат имеют достаточную атмосферостойкость, но полистирол, оргстекло и тем более полиэтилен тут решительно не подойдут (и окрасить для защиты от солнца их тоже будет затруднительно). Если нет возможности приобрести фирменную коробку, лучше самостоятельно спаять корпус из фольгированного стеклотекстолита, и затем окрасить для защиты от коррозии и придания эстетического вида.

В крышке точно в месте выхода оси делается отверстие 8-10 мм, в которое тем же клеем-герметиком вклеивается пластиковый конус, вырезанный из носика от баллончика со строительным герметиком или клеем:

image

Чтобы отцентровать конус по оси, струбциной закрепите снизу крышки деревяшку, наметьте на ней точный центр и немного углубитесь перовым сверлом 12 мм, сделав вокруг отверстия кольцевое углубление. Конус туда должен войти точно, после чего его можно обмазывать клеем. Можно его дополнительно зафиксировать в вертикальном положении на время застывания винтом М6 с гайкой.

Датчик скорости сам накрывает ось с этим конусом, как зонтиком, предотвращая попадание воды внутрь корпуса. Для флюгера стоит дополнительно разместить над конусом втулку, которая закроет зазор между осью и конусом от прямого стока воды (см. фото общего вида датчиков далее).

Провода от оптопар у меня выведены на отдельный разъем типа D-SUB (см. фото датчика направления выше). Ответная часть с кабелем вставляется через прямоугольное отверстие в основании корпуса. Отверстие затем прикрывается крышкой с прорезью для кабеля, которая удерживает разъем от выпадания. К основанию корпуса привинчиваются дюралевые скобы для крепления на месте. Конфигурация их зависит от места установки датчиков.

В собранном виде оба датчика выглядят следующим образом:

image

Здесь они показаны уже установленными на место — на конек беседки. Обратите внимание, что углубления для крепящих крышку винтов защищены от воды заглушками из сырой резины. Датчики устанавливаются строго горизонтально по уровню, для чего пришлось использовать подкладки из кусочков линолеума.

Электронная часть

Метеостанция в целом состоит из двух модулей: выносного блока (который обслуживает оба датчика ветра, а также снимает показания с внешнего датчика температуры-влажности), и основного модуля с дисплеями. Выносной блок оборудован беспроводным передатчиком для отправки данных, установленным внутри него (антенна торчит сбоку). Основной модуль принимает данные от выносного блока (приемник для удобства его ориентации вынесен на кабеле в отдельный блок), а также снимает показания с внутреннего датчика температуры-влажности и выводит все это на дисплеи. Отдельная составляющая основного блока — часы с календарем, которые для удобства общей настройки станции обслуживаются отдельным контроллером Arduino Mini, и имеют свои дисплеи.

Выносной модуль и измерительная схема датчиков ветра

В качестве фотоизлучателей были выбраны светодиоды ИК-диапазона АЛ-107Б. Эти старинные светодиоды, конечно, не самые лучшие в своем классе, зато имеют миниатюрный корпус диаметром 2,4 мм и способны пропускать ток до 600 мА в импульсе. Между прочим, при испытаниях выяснилось, что образец этого светодиода около 1980 года выпуска (в корпусе красного цвета) имеет примерно вдвое большую эффективность (выразившуюся в дальности уверенной работы фотоприемника), чем современные экземпляры, купленные в «Чипе-Дипе» (они имеют прозрачный желтовато-зеленый корпус). Вряд ли в 1980 году кристаллы были лучше, чем сейчас, хотя чем черт не шутит? Возможно, однако, дело в разных углах рассеяния в том и другом оформлении.

Через светодиод в датчике скорости пропускался постоянный ток около 20 мА (резистор 150 Ом при питании 5 вольт), а в датчике направления — импульсный (меандр со скважностью 2) ток около 65 мА (те же 150 Ом при питании 12 вольт). Средний ток через один светодиод датчика направления при этом около 33 мА, всего через четыре канала — около 130 мА.

В качестве фотоприемников были выбраны фототранзисторы L-32P3C в корпусе диаметром 3 мм. Сигнал снимался с коллектора, нагруженного на резистор 1,5 или 2 кОм от питания 5 В. Эти параметры подобраны так, чтобы на расстоянии ~20 мм между фотоизлучателем и приемником на вход контроллера поступал сразу полноразмерный логический сигнал в 5-вольтовых уровнях без дополнительного усиления. Токи, фигурирующие здесь, могут показаться вам несоразмерно большими, если исходить из озвученного выше требования минимального энергопотребления, но как вы увидите, фигурируют они в каждом цикле измерения на протяжении максимум нескольких миллисекунд так, что общее потребление остается небольшим.

Основой для крепления приемников и излучателей послужили отрезки кабельного канала (видны на фото датчиков выше), вырезанные так, чтобы у основания образовать «ушки» для крепления на скобе. Для каждого из этих обрезков к запирающей крышке изнутри приклеивалась пластиковая пластинка, по ширине равная ширине канала. Светодиоды и фототранзисторы закреплялись на нужном расстоянии в отверстиях, просверленных в этой пластинке так, чтобы выводы оказались внутри канала, а наружу выступали только выпуклости на торце корпусов. Выводы распаиваются в соответствии со схемой (см. ниже), внешние выводы делаются обрезками гибкого разноцветного провода. Резисторы для излучателей датчика направления также размещаются внутри канала, от них делается один общий вывод. После распайки крышка защелкивается на место, все щели герметизируются пластилином и дополнительно липкой лентой, которой также закрывается отверстие со стороны, противоположной выводам, и вся конструкция заливается эпоксидной смолой. Внешние выводы, как можно видеть на фото датчиков, выводятся на клеммную колодку, закрепленную на тыльной стороне скобы.

Принципиальная схема блока обработки датчиков ветра выглядит так:

image

О том, откуда берется питание 12-14 вольт, см. далее. Кроме компонентов, указанных на схеме, выносной блок содержит датчик температуры-влажности, который на схеме не показан. Делитель напряжения, подключенный к выводу A0 контроллера, предназначен для контроля напряжения источника питания с целью своевременной замены. Светодиод, подключенный к традиционному выводу 13 (вывод 19 корпуса DIP) — суперяркий, для его нормального, не слепящего свечения достаточно тока в доли миллиампера, что и обеспечивается необычно высоким номиналом резистора 33 кОм.

В схеме используется «голый» контроллер Atmega328 в DIP-корпусе, запрограммированный через Uno и установленный на панельку. Такие контроллеры с уже записанным Arduino-загрузчиком, продаются, например, в «Чипе-Дипе» (или загрузчик можно записать самостоятельно). Такой контроллер удобно программировать в привычной среде, но, лишенный компонентов на плате, он во-первых, получается экономичнее, во-вторых, занимает меньше места. Полноценный энергосберегающий режим можно было бы получить, избавившись и от загрузчика тоже (и вообще расписав весь код на ассемблере :), но здесь это не очень актуально, а программирование при этом неоправданно усложняется.

На схеме серыми прямоугольниками обведены компоненты, относящиеся отдельно к каналам скорости и направления. Рассмотрим функционирование схемы в целом.

Работа контроллера в целом управляется сторожевым таймером WDT, включенным в режиме вызова прерывания. WDT выводит контроллер из режима сна через заданные промежутки времени. В случае, если в вызванном прерывании таймер взводится заново, перезагрузки с нуля не происходит, все глобальные переменные остаются при своих значениях. Это позволяет накапливать данные от пробуждения к пробуждению и в какой-то момент обрабатывать их — например, усреднять.

В начале программы сделаны следующие объявления библиотек и глобальных переменных (чтобы не загромождать текст и без того обширных примеров, здесь выпущено все, что относится к датчику температуры-влажности):

#include <VirtualWire.h> #include <avr/wdt.h> #include <avr/sleep.h> . . . . . #define ledPin 13 //вывод светодиода (PB5 вывод 19 ATmega) #define IR_Pin 10 //управление транзистором IRLU (PB2 вывод 16 Atmega) #define in_3p 9 //вход приемника разряд 3 #define in_2p 8 //вход приемника разряд 2 #define in_1p 7 //вход приемника разряд 1 #define in_0p 6 //вход приемника разряд 0 #define IR_PINF 5 //(PD5,11) вывод для ИК-светодиода частоты #define IN_PINF 4 //(PD4,6) вход обнаружения частоты   volatile unsigned long ttime = 0; //Период срабатывания датчика float ff[4]; //значения частоты датчика скорости для осреднения char msg[25]; //посылаемый месседж byte count=0;//счетчик int batt[4]; //для осреднения батарейки byte wDir[4]; //массив направлений ветра byte wind_Gray=0; //байт кода направления ветра 

Для инициации режима сна и WDT (пробуждение каждые 4 с) служат следующие процедуры:

// перевод системы в режим сна void system_sleep() {  ADCSRA &= ~(1 << ADEN); //экв. cbi(ADCSRA,ADEN); выключим АЦП  set_sleep_mode(SLEEP_MODE_PWR_DOWN); // режим сна  sleep_mode(); // система засыпает  sleep_disable(); // система продолжает работу после переполнения watchdog  ADCSRA |= (1 << ADEN); /экв. sbi(ADCSRA,ADEN); включаем АЦП }  //**************************************************************** // ii: 0=16ms, 1=32ms,2=64ms,3=128ms,4=250ms,5=500ms // 6=1 sec,7=2 sec, 8=4 sec, 9= 8sec void setup_watchdog(int ii) {  byte bb;  if (ii > 9 ) ii=9;  bb=ii & 7;  if (ii > 7) bb|= (1<<5); //в bb - код периода  bb|= (1<<WDCE);  MCUSR &= ~(1<<WDRF);  // запуск таймера  WDTCSR |= (1<<WDCE) | (1<<WDE);  // установка периода срабатывания сторожевого таймера  WDTCSR = bb;  WDTCSR |= (1<<WDIE); //прерывание WDT  } //****************************************************************  // Обработка прерывания сторожевого таймера  ISR(WDT_vect) {  wdt_reset(); } 

Датчик скорости выдает частоту прерывания оптического канала, порядок величин — единицы-десятки герц. Мерить такую величину экономичнее и быстрее через период (этому была посвящена публикация автора «Оценка методов измерения низких частот на Arduino»). Здесь выбран метод через модифицированную функцию pulseInLong(), который не привязывает измерение к определенным выводам контроллера (текст функции periodInLong() можно найти в указанной публикации).

В функции setup() объявляются направления выводов, инициализируются библиотека передатчика 433 МГц и сторожевой таймер (строка для IN_PINF в принципе лишняя, и вставлена для памяти):

void setup() {  pinMode(IR_PINF, OUTPUT); //на выход  pinMode(IN_PINF, INPUT); //вывод обнаружения частоты на вход  pinMode(13, OUTPUT); //светодиод  vw_setup(1200); // скорость соединения VirtualWire  vw_set_tx_pin(2); //D2, PD2(4) вывод передачи VirtualWire // Serial.begin(9600); // Serial-порт для контроля при отладке  setup_watchdog(8); //WDT период 4 c  wdt_reset(); } 

Наконец, в основном цикле программы мы сначала каждый раз при пробуждении (каждые 4 секунды) считываем напряжение и рассчитываем частоту датчика скорости ветра:

void loop() {  wdt_reset(); //обнуляем таймер  digitalWrite(ledPin, HIGH); //включаем светодиод для контроля  batt[count]=analogRead(0); //читаем и сохраняем текущий код батарейки /*=== частота ==== */   digitalWrite(IR_PINF, HIGH); //включаем ИК-светодиод датчика скорости  float f=0; //переменная для частоты  ttime=periodInLong(IN_PINF, LOW, 250000); //ожидание 0,25 сек // Serial.println(ttime); //для контроля при отладке  if (ttime!=0) {//на случай отсутствия частоты  f = 1000000/float(ttime);} // вычисляем частоту сигнала в Гц  digitalWrite(IR_PINF, LOW); //выключаем ИК-светодиод  ff[count]=f; //сохраняем вычисленное значение в массиве  . . . . . 

Время горения ИК-светодиода (потребляющего, напомню, 20 мА) здесь, как видите, будет максимальным при отсутствии вращения диска датчика и составляет при этом условии около 0,25 секунды. Минимальная измеряемая частота, таким образом, составит 4 Гц (четверть оборота диска в секунду при 16 отверстиях). Как выяснилось при калибровке датчика (см. далее), это соответствует примерно 0,2 м/с скорости ветра Подчеркнем, что это минимальная измеряемая величина скорости ветра, но не разрешающая способность и не порог трогания (который окажется гораздо выше). При наличии частоты (то есть при вращении датчика) время измерения (и, соответственно, время горения LED, то есть потребление тока) будет пропорционально уменьшаться, а разрешающая способность — увеличиваться.

Далее следуют процедуры, которые выполняются каждое четвертое пробуждение (то есть каждые 16 секунд). Значение частоты датчика скорости из накопленных четырех значений мы передаем не среднее, а максимальное — как показал опыт, это более информативная величина. Каждую из величин, независимо от ее типа, для удобства и единообразия мы перед передачей превращаем в целое положительное число размером в 4 десятичных разряда. За отсчетом числа пробуждений следит переменная count:

//каждые 16 сек усредняем батарейку и определяем максимальное значение  //частоты из 4-х значений: if (count==3){   f=0; //значение частоты  for (byte i=0; i<4; i++) if (f<ff[i]) f=ff[i]; //максимальное значение из четырех  int fi=(int(f*10)+1000); //доводим до 4 дес. разрядов для отправки  int volt=0; //код батарейки  for (byte i=0; i<4; i++) volt=volt+batt[i];  volt=volt/4+100; //средний код на 100 больше = 3 дес.разряда   volt=volt*10; //до 4 дес. разрядов . . . . . 

Далее — определение кода Грея направления. Здесь для снижения потребления вместо постоянно включенных ИК-светодиодов на все четыре канала одновременно через ключевой полевой транзистор с помощью функции tone() подается частота 5 кГц. Обнаружение наличия частоты на каждом из разрядов (выводы in_0p – in_3p) производится методом, аналогичным антидребезгу при считывании показаний нажатой кнопки. Сначала в цикле дожидаемся, имеется ли на выводе высокий уровень, и затем проверяем его через 100 мкс. 100 мкс есть полпериода частоты 5 кГц, то есть при наличии частоты минимум со второго раза мы опять попадем на высокий уровень (на всякий случай повторяем четыре раза) и это означает, что он точно там есть. Эту процедуру повторяем для каждого из четырех бит кода:

/* ===== Wind Gray ==== */ //направление:  tone(IR_Pin,5000);//частоту 5 кГц на транзистор  boolean yes = false;  byte i=0;  while(!yes){ //разряд 3  i++;  boolean state1 = (digitalRead(in_3p)&HIGH);  delayMicroseconds(100); // задержка в 100 микросекунд   yes=(state1 & !digitalRead(in_3p));  if (i>4) break; //пробуем четыре раза  }   if (yes) wDir[3]=1; else wDir[3]=0;  yes = false;  i=0;  while(!yes){ //разряд 2  i++;  boolean state1 = (digitalRead(in_2p)&HIGH);  delayMicroseconds(100); // задержка в 100 микросекунд   yes=(state1 & !digitalRead(in_2p));  if (i>4) break; //пробуем четыре раза  }   if (yes) wDir[2]=1; else wDir[2]=0;  yes = false;  i=0;  while(!yes){ //разряд 1  i++;  boolean state1 = (digitalRead(in_1p)&HIGH);  delayMicroseconds(100); // задержка в 100 микросекунд   yes=(state1 & !digitalRead(in_1p));  if (i>4) break; //пробуем четыре раза  }   if (yes) wDir[1]=1; else wDir[1]=0;  yes = false;  i=0;  while(!yes){ //разряд 0  i++;  boolean state1 = (digitalRead(in_0p)&HIGH);  delayMicroseconds(100); // задержка в 100 микросекунд   yes=(state1 & !digitalRead(in_0p));  if (i>4) break; //пробуем четыре раза  }   if (yes) wDir[0]=1; else wDir[0]=0;  noTone(IR_Pin); //выключаем частоту  //собираем в байт в коде Грея:  wind_Gray=wDir[0]+wDir[1]*2+wDir[2]*4+wDir[3]*8; //прямой перевод в дв. код  int wind_G=wind_Gray*10+1000; //дополняем до 4-х дес. разрядов . . . . . 

Максимальная длительность одной процедуры будет при отсутствии частоты на приемнике и равна 4×100 = 400 микросекунд. Максимальное время горения 4-х светодиодов направления будет тогда, когда не засвечен ни один приемник, то есть 4×400 = 1,6 миллисекунды. Алгоритм, кстати, точно так же будет работать, если вместо частоты, период которой кратен 100 мкс, просто подать постоянный высокий уровень на светодиоды. При наличии меандра вместо постоянного уровня мы просто экономим питание вдвое. Мы можем еще сэкономить, если завести каждый ИК-светодиод через отдельную линию (соответственно, через отдельный вывод контроллера со своим ключевым транзистором), но зато при этом усложняется схема, разводка и управление, а ток в 130 мА в течение 2 мс каждые 16 секунд — это, согласитесь, немного.

Наконец, беспроводная передача данных. Для передачи данных от места установки датчиков до табло метеостанции был выбран самый простой, дешевый и надежный способ: пара передатчик/приемник на частоте 433 МГц. Согласен, способ не самый удобный (из-за того, что девайсы рассчитаны на передачу битовых последовательностей, а не целых байтов, приходится изощряться в конвертации данных между нужными форматами), и уверен, что многие со мной захотят поспорить в плане его надежности. Ответ на последнее возражение простой: «ты просто не умеешь их готовить!».

Секрет в том, что обычно остается за кадром различных описаний обмена данными по каналу 433 МГц: поскольку приборы эти чисто аналоговые, то питание приемника должно быть очень хорошо очищено от любых посторонних пульсаций. Ни в коем случае не следует питать приемник от внутреннего 5-вольтового стабилизатора Arduino! Установка для приемника отдельного маломощного стабилизатора (LM2931, LM2950 или аналогичного) непосредственно поблизости от его выводов, с правильными цепями фильтрации на входе и выходе, радикально повышает дальность и надежность передачи.

В данном случае передатчик работал непосредственно от напряжения аккумулятора 12 В, приемник и передатчик были снабжены стандартными самодельными антеннами в виде отрезка провода длиной 17 см. (Напомню, что провод для антенн пригоден только одножильный, а размещать антенны в пространстве необходимо параллельно друг другу.) Пакет информации длиной в 24 байта (с учетом влажности и температуры) без каких-то проблем уверенно передавался со скоростью 1200 бит/с по диагонали через садовый участок 15 соток (около 40-50 метров), и затем через три бревенчатых стенки внутрь помещения (в котором, например, сотовый сигнал принимается с большим трудом и не везде). Условия, практически недостижимые для любого стандартного способа на 2,4 ГГц (типа Bluetooth, Zig-Bee и даже любительский Wi-Fi), притом, что потребление передатчика здесь составляет жалкие 8 мА и только в момент собственно передачи, остальное время передатчик потребляет сущие копейки. Передатчик конструктивно размещен внутри выносного блока, антенна торчит сбоку горизонтально.

Объединяем все данные в один пакет (в реальной станции к нему добавятся еще температура и влажность), состоящий из единообразных 4-байтных частей и предваряемый сигнатурой «DAT», отправляем его на передатчик и завершаем все циклы:

/*=====Transmitter=====*/  String strMsg="DAT"; //сигнатура - данные  strMsg+=volt; //присоединяем батарейку 4 разряда  strMsg+=wind_G; //присоединяем wind 4 разряда  strMsg+=fi; //присоединяем частоту 4 разряда  strMsg.toCharArray(msg,16); //переводим строку в массив // Serial.println(msg); //для контроля  vw_send((uint8_t *)msg, strlen(msg)); // передача сообщения  vw_wait_tx(); // ждем завершения передачи - обязательно!  delay(50); //+ еще на всякий случай задержка  count=0; //обнуляем счетчик }//end count==3  else count++;  digitalWrite(ledPin, LOW); //гасим сигнальный светодиод  system_sleep(); //систему — в сон } //end loop 

Размер пакета можно сократить, если отказаться от требования представления каждой из величин разнообразных типов в виде единообразного 4-байтового кода (например, для кода Грея, конечно, хватит и одного байта). Но универсализации ради я оставил все как есть.

Питание и особенности конструкции выносного блока. Потребление выносного блока подсчитываем таким образом:

— 20 мА (излучатель) + ~20 мА (контроллер со вспомогательными цепями) в течение примерно 0,25 с каждые четыре секунды — в среднем 40/16 = 2,5 мА;
— 130 мА (излучатели) + ~20 мА (контроллер со вспомогательными цепями) в течение примерно 2 мс каждые 16 секунд — в среднем 150/16/50 ≈ 0,2 мА;

Накинув на этот расчет потребление контроллера при съеме данных с датчика температуры-влажности и при работе передатчика, смело доводим среднее потребление до 4 мА (при пиковом около 150 мА, заметьте!). Батарейки (которых, кстати, потребуется аж 8 штук для обеспечения питания передатчика максимальным напряжением!) придется менять слишком часто, потому возникла идея питать выносной блок от 12-вольтовых аккумуляторов для шуруповерта — их у меня образовалось как раз две штуки лишних. Емкость их даже меньше, чем соответствующего количества АА-батареек — всего 1,3 А•часа, но зато никто не мешает их менять в любое время, держа наготове второй заряженный. При указанном потреблении 4 мА емкости 1300 мА•часов хватит примерно на две недели, что получается не слишком хлопотно.

Отметим, что напряжение свежезаряженного аккумулятора может составить до 14 вольт. На этот случай поставлен входной стабилизатор 12 вольт — чтобы не допустить перенапряжений питания передатчика и не перегружать основной пятивольтовый стабилизатор.

Выносной блок в подходящем пластиковом корпусе размещается под крышей, к нему на разъемах подведен кабель питания от аккумулятора и соединения с датчиками ветра. Основная сложность в том, что схема оказалась крайне чувствительной к влажности воздуха: в дождливую погоду уже через пару часов начинает сбоить передатчик, измерения частоты показывают полную кашу, а измерения напряжения аккумулятора показывают «погоду на Марсе».

Поэтому после отладки алгоритмов и проверки всех соединений корпус необходимо тщательно герметизировать. Все разъемы в месте входа в корпус промазываются герметиком, то же самое касается всех головок винтов, торчащих наружу, выхода антенны и кабеля питания. Стыки корпуса промазываются пластилином (с учетом того, что их придется разнимать), и дополнительно проклеиваются сверху полосками сантехнического скотча. Неплохо дополнительно аккуратно укрепить эпоксидкой используемые разъемы внутри: так, указанный на схеме выносного модуля DB-15 сам по себе не герметичен, и между металлическим обрамлением и пластиковой основой будет медленно просачиваться влажный воздух.

Но все эти меры сами по себе дадут только кратковременный эффект — даже если не будет подсоса холодного влажного воздуха, то сухой воздух из комнаты легко превращается во влажный при падении температуры снаружи корпуса (вспомните про явление, называемое «точка росы»).

Чтобы этого избежать, необходимо внутри корпуса оставить патрончик или мешочек с влагопоглотителем — силикагелем (мешочки с ним иногда вкладывают в коробки с обувью или в некоторые упаковки с электронными устройствами). Если силикагель неизвестного происхождения и долго хранился, его перед использованием необходимо прокалить в электродуховке при 140-150 градусах несколько часов. Если корпус герметизирован как следует, то менять влагопоглотитель придется не чаще, чем в начале каждого дачного сезона.

habr.com

Механические анемометры[править | править код]

Чашечный анемометр[править | править код]

Наиболее распространённый тип анемометра — это чашечный анемометр. Изобретён доктором Джоном Томасом Ромни Робинсоном, работавшем в обсерватории Армы, в 1846 году. Состоит из четырёх полусферических чашек, симметрично насаженных на крестообразные спицы ротора, вращающегося на вертикальной оси.

Ветер любого направления вращает ротор со скоростью, пропорциональной скорости ветра.

Робинсон предполагал, что для такого анемометра линейная скорость кругового вращения чашек составляет одну треть от скорости ветра, и не зависит от размера чашек и длины спиц. Проделанные в то время эксперименты это подтверждали. Более поздние измерения показали, что это неверно, т. н. «коэффициент анемометра» (величина обратная отношению линейной скорости к скорости ветра) для простейшей конструкции Робинсона зависит от размеров чашек и длины спиц и лежит в пределах от двух до чуть более трёх.

Трёхчашечный ротор, предложенный канадцем Джоном Паттерсоном в 1926 году, и последующие усовершенствования формы чашек Бревортом и Джойнером в 1935-м году сделали чашечный анемометр линейным в диапазоне до 100 км/ч (27 м/с) с погрешностью около 3 %. Паттерсон обнаружил, что каждая чашка даёт максимальный вращающий момент, будучи повёрнутой на 45° к направлению ветра. Трёхчашечный анемометр отличается бóльшим вращающим моментом и быстрее отрабатывает порывы, чем четырёхчашечный.

Оригинальное усовершенствование чашечной конструкции, предложенное австралийцем Дереком Вестоном (в 1991 г.), позволяет с помощью того же ротора определять не только скорость, но и направление ветра. Оно заключается в установке на одну из чашек флажка, из-за которого скорость ротора неравномерна в течение одного оборота (половину оборота флажок движется по ветру, половину оборота — против). Определив круговой сектор относительно метеостанции, в котором скорость увеличивается или уменьшается, определяется направление ветра.

Вращение ротора в простейших анемометрах передаётся на механический счётчик числа оборотов. Скорость подсчитывается по числу оборотов за заданное время, например, минуту, таковы ручные анемометры.

В более совершенных анемометрах ротор связан с тахогенератором, выходной сигнал которого (напряжение) подаётся на вторичный измерительный прибор (вольтметр), или используются тахометры, основанные на иных принципах. Такие анемометры сразу показывают мгновенную скорость ветра, без дополнительных вычислений, и позволяют следить за изменениями скорости ветра в реальном времени.

Самые распространённые модели современности среди чашечных анемометров это МС 13, М 95ЦМ, анемометр АРЭ

Помимо метеорологических измерений, чашечные анемометры применяются и на башенных подъёмных кранах, для сигнализации об опасном превышении скорости ветра.

Крыльчатые анемометры[править | править код]

В таких анемометрах поток воздуха вращает миниатюрное лёгкое ветровое колесо (крыльчатку), ограждённую металлическим кольцом для защиты от механических повреждений. Вращение крыльчатки через систему зубчатых колёс передаётся на стрелки счётного механизма.

Ручные крыльчатые анемометры применяются для измерения скорости направленного воздушного потока в трубопроводах и коробах вентиляционных устройств для вычисления расхода вентиляционного воздуха в вентиляционных отверстиях, воздуховодах жилых и производственных зданий.

Наиболее распространённые анемометры с крыльчаткой-зондом — это Testo 416, анемометр ИСП-МГ4, анемометр АПР-2 и другие.

Тепловой анемометр[править | править код]

Принцип работы таких анемометров, часто называемых термоанемометрами, основан на увеличении теплопотерь нагретого тела при увеличении скорости обдувающего более холодного газа — изменение числа Нуссельта.

Это явление всем знакомо, известно, что при неизменной температуре в ветреную погоду ощущение холода сильнее при большей скорости ветра.

Конструктивно представляет собой открытую тонкую металлическую проволоку (нить накаливания), нагреваемую выше температуры среды электрическим током. Проволока изготавливается из металла с положительным температурным коэффициентом сопротивления — из вольфрама, нихрома, платины, серебра и т. п.)

Сопротивление нити изменяется от изменений температуры, таким образом по сопротивлению можно измерить температуру. Температура определённым образом зависит от скорости ветра, плотности воздуха, его влажности.

Проволока термодатчика включается в электронную схему. В зависимости от метода включения датчика различают приборы с стабилизацией тока проволоки, стабилизацией напряжения и с термостатированием проволоки. В первых двух методах характеристикой скорости является температура проволоки, в последнем — мощность, необходимая для термостабилизации.

Термоанемометры широко используется практически во всех современных автомобилях в качестве датчика массового расхода воздуха (ДМРВ).

Недостатки термоанемометров — низкая механическая прочность, так как применяемая проволока очень тонкая, другой недостаток — нарушение калибровки из-за загрязнения и окисления горячей проволоки, но, так как они практически безынерционны, широко применяются в аэродинамических экспериментах для измерения локальной турбулентности и пульсаций потока.

Ультразвуковой анемометр[править | править код]

Принцип действия анемометров ультразвукового типа основан на измерении скорости звука, которая изменяется в зависимости от ориентации вектора движения воздуха (направления ветра) относительно пути распространения звука.

Существуют двухкомпонентные ультразвуковые анемометры — измеряют помимо скорости и направление ветра по частям света — направление горизонтального ветра и трёхкомпонентные ультразвуковые анемометры — измерители всех трёх компонент вектора скорости воздуха.

Скорость звука в таких анемометрах измеряется по времени прохода ультразвуковых импульсов между фиксированным расстоянием от излучателя до ультразвукового микрофона, затем измеренные времена пересчитываются в две или три компоненты скорости движения воздуха.

Так как скорость звука в воздухе зависит ещё от температуры (возрастает пропорционально корню квадратному из абсолютной температуры), в ультразвуковых анемометрах обязательно есть термометр, по показаниям которого вносятся поправки в вычисления скорости ветра.

Многие современные модели электронных анемометров позволяют измерять не только скорость ветра (это основное предназначение прибора), но и снабжены дополнительными удобными сервисными функциями — вычисления объёмного расхода воздуха, измерения температуры воздуха (термоанемометр), влажность воздуха (термоанемометр с функцией измерения влажности).

Российскими предприятиями также выпускаются многофункциональные приборы, которые содержат в себе функции как термоанемометра, так и гигрометра (измерение влажности) и манометра (измерение дифференциального давления в воздуховоде). Например, метеометр МЭС200, дифманометр ДМЦ01М. Такие приборы используются при создании, обследовании, ремонте, поверке вентиляционных шахт в зданиях любого типа.

Как правило, все выпускаемые на территории РФ анемометры подлежат обязательной сертификации и государственной поверке, так как являются средствами измерения.

Некоторые народные умельцы делают самодельные анемометры для собственных бытовых нужд, например, для сада-огорода.

См. также[править | править код]

  • Анеморумбограф
  • Шкала Бофорта

ru.wikipedia.org

Видео от «Pro Shop»: Анемометр — прибор для измерения скорости ветра

К сожалению, достаточно часто на кайт спотах можно наблюдать такую картину: новичок запускает кайт в небо и не может справиться с тягой, даже в краю ветрового окна, где она минимальна. А подняв купол над головой в зенит такого горе-кайтера начинает не контролируемо выдергивать в небо. На кайтерской фене такое понятие даже имеет свой собственный термин — «чайный пакетик». Всё это может очень плохо закончиться для новичка.

Чтобы не попадать в подобную ситуацию, необходимо четко следовать рекомендациям производителя по поводу соответствия площади Вашего купола силе ветра, в котором его можно использовать.

А чтобы определить силу (скорость) ветра, кайтеры используют специальные измерительные приборы — анемометры, или проще говоря по кайтфене — машинка, приборчик, ананимитр 🙂

Обзор анемометров JDC Electronic

Лидером рынка в производстве анемометров является швейцарская фирма JDC Electronic, которая занимается разработкой измерителей ветра уже более четверти века. За это время её продукция по праву завоевала огромную популярность у людей для которых вопрос ”А сколько ДУЕТ? “ имеет важное значение.

Среди огромного разнообразия моделей JDC для нас интересны ручные анемометры индивидуального типа. В линейке JDC они представлены двумя основными группами по виду механизма, определяющего силу ветра – крыльчатые и чашечные.

Измеритель ветра

Крыльчатку (маленький пропеллер диаметром 12-17 мм, установленный вертикально) нужно распологать по потоку для точного определения силы ветра, а чашка (пропеллер диаметром 54 мм, установленный горизонтально) этого не требует.

Крыльчатые анемометры JDC

Из крыльчатых анемометров последних лет настоящий хит – первая модель из серии Xplorer. Направляем прибор по ветру и получаем на экране главные цифирки, которые нам нужны: скорость и максимальный порыв. Как и все модели Xplorer`ов , этот анемометр очень небольшой и легкий – всего 50 грамм. К приборчику прикреплен шнурок, его удобно повесить на шею и пользоваться при необходимости. Есть подсветка дисплея. Серия анемометров Xplorer не боится брызг и полного купания в воде.

В моделе Xplorer 2 добавлен сенсор температуры. Этим он нравится многим пользователям, можно быстро определить температуру воды, просто опустив его на несколько секунд в воду. Эта модель полезна осенью и весной, когда стоит вопрос какой толщины гидрокостюм одеть, чтобы не замерзнуть.

Измеритель ветра

Третья модель Xplorer 3 — кроме скорости и температуры может показать направление ветра, т.к. имеет встроенный цифровой компас.

Xplorer 4 — уже практически метеостанция в кармане. За счет записи атмосферного давления можно понять намечаемое изменение в погоде. Это неплохо при ожидании ветра. Ведь известно, что в средней полосе ветра дуют, в основном, при прохождении атмосферных фронтов, что сопровождается ощутимым изменением (падением) давления. А если вдруг обнаруживается, что давление грохнулось вертикально вниз за последние 20-30 минут (обычно перед тучей) – осторожно, шквала не миновать! Скорость и направление ветра, температура воды и воздуха измеряется в нем также как в моделях 1, 2, 3.

Чашечные анемометры JDC

В 2009 году по примеру Xplorer`ов обновленные модели чашечных измерителей ветра Eole и Meteos стали водостойкими и с подсветкой.Теперь они к тому же более массивные и сделаны основательнее, что так необходимо при установке на штативе, например, на берегу для всеобщего обзора. Главное в этих анемометрах — чашка дает возможность получать точные значения, не направляя прибор строго по ветру. Кроме текущей скорости и максимальных порывов на дисплее можно увидеть среднюю скорость ветра за определенный период. Всё это удобно при длительном наблюдении за ветром, поэтому у судей различных соревнований можно часто увидеть Eole или Meteos.

Измеритель ветра

Особенность модели Meteos — датчик температуры, с помощью которого прибор показывает не только текущую температуру воздуха, но и вычисляет так называемый виндчил-фактор (коэффициент охлаждения). Вы знаете, что при температуре 0 градусов и скорости ветра 8 м/с эффект воздействия холода такой же как и при температуре минус 13 градусов без ветра. Эта температура минус 13 градусов и называется виндчил-фактор. В холодную погоду хорошо ориентироваться на эти показания, чтобы не допустить переохлаждения на ветру.

Такая же функция есть и в моделях Xplorer 2,3,4 и элитарной модели Geos N11

Ручная метеостанция Geos N11

GEOS N11 создан для самых требовательных пользователей, которые хотят знать всё (!) о параметрах воздуха. Это совершенно уникальная ручная метеостанция. При небольших размерах и весе всего в 170 грамм, в ней предусмотрена возможность записи во внутреннюю память всех параметров окружающей среды – скорости ветра, температуры, влажности, давления воздуха. И особая фишка — это передача этих данных на компьютер по USB-кабелю через уникальную пластину, которая прикладывается к экрану. В этой моделе очень много специальных функций, которых нет ни в одной другой моделе. Например, большой интерес представляет для кайтеров плотность воздуха (важный параметр, который непосредственно влияет на тягу кайта).

Измеритель ветра

Мы как-то измеряли плотность ветра в мороз при -15…-20: холодный арктический сухой воздух плотнее, чем влажный летний при -25…-30 градусов процентов на 15-20. В общем, очень навороченный приборчик, который помещается на ладони.

Уверены, что широкий спектр моделей анемометров JDC: от Xplorer 1 до Geos N11 поможет всегда держать ветер под Вашим контролем.

Необходимость измерения скорости ветра

Удивительно, но встречаются до сих пор райдеры, утверждающие, что толку в машинке нет, и если она уж и может для чего-то сгодиться, так только если для развеселых конкурсов, которые часто проводятся на славящихся на весь мир разнузданных кайтерских вечеринках.

Но поверьте, лишь только Вы достанете анемометр из кармана чтобы определить силу ветра на берегу, тут же тот типчик, который только что больше всех кричал, что, мол, анемометр — ненужная безделушка, нарисуется рядом с вами, чтобы узнать текущие показания скорости ветра.

Дело в том, что самостоятельно достаточно сложно точно определить скорость ветра. Вы можете, к примеру, на глаз отличить 10 от 12 м/с? А если при этом у Вас линейка кайтов, скажем, 12 и 8? Ведь если средний ветер дует 12 м/с, то Вы возьмете 8-ку, а если 10 м/с, то, скорее, правильным выбором будет 12-ка.

Поэтому настоятельно рекомендуем из всех кайтерских аксессуаров в первую очередь особое внимание уделить именно анемометру. И даже дело не в том, что это изящный качественный приборчик швейцарского производства, а в том, что это действительно базовый элемент безопасности райдера.

 << Анемометры JDC в Кайтовом магазине «Pro Shop» >>

2009 июнь © Copyright кайт портал Kites.Ru Андрей Леонов, Дмитрий Евсеев

www.kites.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.