Мотор колесо своими руками


****
Burrdozel, уважаемый! Я с самого начала нашей любезной переписки под термином «вентильная» или «brushless» (под такими названиями приводчики обычно подразумевают трёхфазную машину, имеющую ротор на постоянных магнитах с явно выраженными парами полюсов) описывал работу не классической синхронной, у которой ротор выполнен из магнитомягкой электротехнической стали и намагничивается специальной обмоткой, либо слабо намагничен и имеет возможность перемагнититься по ходу пьесы, во время работы.
Я описывал работу машины, ротор которой перемагнитить во время её работы невозможно по определению. И просил вас не путать классическую синхронную с вентильной.
Цитирую себя:
«Вентильные (brushless) машины относятся, как правило, к коммутируемым машинам постоянного или переменного тока с постоянными магнитами на роторе. Они не относятся к классу синхронных машин – это принципиально, хотя ротор у этих машин вращается синхронно полю статора, однако частоту и фазу вращения поля статора задаёт именно ротор, а не наоборот, как это происходит у синхронных машин».


Читайте внимательно: «а не наоборот, как это происходит у синхронных машин».
Ещё раз: «а не наоборот, как это происходит у синхронных машин».

Цитирую себя далее:
«С шаговыми двигателями их так же не следует путать, так как шаговики имеют совершенно иную природу коммутации. Некоторые шаговики можно сравнить с вентильной реактивной машиной, у которой — ротор выполнен из магнитомягкой электротехнической стали и которая может работать в шаговом режиме и в режиме коммутации по ДПР. Но вентильная реактивная и вентильная с постоянными магнитами на роторе – совершенно разные машины».

Из этих пояснений можно составить представление, о чём идёт речь.

Цитирую вас:
«Дело в том, что термин "синхронный двигатель" — хорошее приближение к пониманию того, как работает двигатель на постоянных магнитах (все-таки предпочтительно употреблять такой термин, а не "бесщеточный", да?). Ведь если вращать поле статора, то ротор на постоянных магнитах будет себя вести как у синхронника. То есть вращаться синхронно с полем.
Чем ротор синхронника при работе отличается от постоянного магнита? Ничем. Так что аналогия корректна».

Цитирую вас ещё раз:
«Ведь если вращать поле статора, то ротор на постоянных магнитах будет себя вести как у синхронника».

Цитирую вас ещё раз:
«то ротор на постоянных магнитах будет себя вести как у синхронника».


Тут, все-таки, вы ещё разделяете ротор вентильника и синхронника по определению.
И я думал, что вам известны разные тонкости между роторами вентильника и синхронника.

Но далее вы меня разочаровали:
«Чем ротор синхронника при работе отличается от постоянного магнита? Ничем. Так что аналогия корректна».

Хочу специально для вас заметить, что аналогия не корректна, потому как ротор синхронника выполнен из магнитомягкой электротехнической стали и намагничивается специальной обмоткой (для которого при помощи нехитрого приспособления возможен асинхронный пуск), либо — намагничен слабо и при определённых условиях поле статора может породить на его поверхности более «мощные» пары полюсов, подтягивающие исходные к себе, затем, при ослаблении внешнего поля, исходная намагниченность ротора проявляется вновь, но замысел пьесы уже реализован – ротор «поймал» поле статора и вращается синхронно с ним.
У вентильника такое явление невозможно по определению, так как его ротор изготовлен из мощных магнитов: феррит, магниты на основе редкоземельных металлов и перемагнитить их по ходу пьесы невозможно.

Цитирую вас:
«Надо делать полнокровный частотный привод. Тогда и только тогда Вы сможете получить преимущество».

Цитирую себя далее:
«По поводу блока управления.
Если вы имели в виду обыкновенное частотное управление, реализующее закон U/F, то таким способом покрутить вентилник вам не удастся, придётся прикрутить датчики положения ротора и исполнять их команды. А если вы всё же захотите управлять синусоидальной центрированной ШИМ, то вам придётся прикрутить резольвер (вращающийся трансформатор) или импульсный квадратурный датчик, а также воспользоваться услугами специальной логики или «мелко-эвм», которая и будет вырабатывать синусоидальную центрированную ШИМ, с учётом положения ротора, то есть, определять фазу, частоту и амплитуду «синуса»».


Цитирую вас далее:
«По поводу привода (блока управления). Я называю полнокровным тот самый частотный преобразователь, который сейчас в промышленности- обычный, массово применяемый в асинхронном приводе прибор, выпускающийся десятками производителей в мире. Единственный его недостаток- цена (цена той самой "проги").
Тот, который обеспечивает векторное управление (то есть ему не нужен датчик положения ротора- да и поставить датчик, дело-то нехитрое, а польза будет».

Цитирую вас ещё раз:
«который сейчас в промышленности- обычный, массово применяемый в асинхронном приводе прибор, выпускающийся десятками производителей в мире».

Так каким прибором вы предлагали покрутить вентильник или синхронник? А?

Лично я предложил вам проверить на практике и убедиться:
«Инструмент – блок управления для асинхронных машин, реализующий условия: U/F=CONST или векторное управление.
Подопытный – вентильная (brushless) машина плюс сопротивляющаяся нагрузка на её валу».

Цитирую вас далее:
«Инструмент – блок управления для асинхронных машин, реализующий условия: U/F=CONST или векторное управление.
Подопытный – вентильная (brushless) машина плюс сопротивляющаяся нагрузка на её валу—
Это не мои условия опыта. Это демагогическая чушь. Кто будет запускать синхронную машину от частотника для асинхронной? Управляющая программа должна быть совершенно другой».


Цитирую вас ещё раз:
«Это демагогическая чушь. Кто будет запускать синхронную машину от частотника для асинхронной? Управляющая программа должна быть совершенно другой».

Цитирую ваши ранние утверждения:
«По поводу привода (блока управления). Я называю полнокровным тот самый частотный преобразователь, который сейчас в промышленности- обычный, массово применяемый в асинхронном приводе прибор, выпускающийся десятками производителей в мире. Единственный его недостаток- цена (цена той самой "проги").
Тот, который обеспечивает векторное управление (то есть ему не нужен датчик положения ротора- да и поставить датчик, дело-то нехитрое, а польза будет».

Цитирую вас ещё раз:
«Я называю полнокровным тот самый частотный преобразователь, который сейчас в промышленности- обычный, массово применяемый в асинхронном приводе прибор».
Цитирую вас ещё раз:
«Это демагогическая чушь. Кто будет запускать синхронную машину от частотника для асинхронной? Управляющая программа должна быть совершенно другой».

Всё же, каким прибором вы предлагали покрутить вентильник или синхронник? А?


Замечу специально для вас, что классическую синхронную машину можно «крутить» при помощи обыкновенного «частотника» сработанного специально для «асинхронника». Для вентильника такое извращение недопустимо.

Возможно, путаницу в ваше сознание вносит информация, встречающаяся в отечественной и зарубежной литературе, где вентильную машину постоянного тока с постоянными магнитами на роторе относят к классу синхронных машин.
Действительно, как генератор она может попасть под такую классификацию, потому как вентильная машина постоянного тока с постоянными магнитами на роторе является идеальным синхронным генератором. Но если, у классического синхронного генератора имеется возможность регулировать амплитуду и (фазу в небольших пределах) «синуса» путём изменения тока подмагничевания и такие генераторы могут коллективно (синхронно) работать на одну электрическую розетку, то для вентильника — такое невозможно по определению.
И как двигатель её следует относить к машинам постоянного тока с коммутируемыми
обмотками статора, а не к синхронным двигателям, потому как, цитирую себя:

«Они не относятся к классу синхронных машин – это принципиально, хотя ротор у этих машин вращается синхронно полю статора, однако частоту и фазу вращения поля статора задаёт именно ротор, а не наоборот, как это происходит у синхронных машин».

Ещё раз:
«а не наоборот, как это происходит у синхронных машин».

В будущем, если таковое меня ждёт на этом форуме, я буду говорить «вентильник», подразумевая вентильную машину постоянного тока с постоянными магнитами на роторе.

Сообщение отмодерировано.

www.mastergrad.com


Мотор колесо своими руками

Технический директор REG.RU Валерий Студенников попытался решить транспортную проблему лично для себя, а затем превратил своё хобби в интересный стартап.

Представляем вашему вниманию рассказ основателя Electron Bikes о том, как сделать мощный электровелосипед своими руками, почему любителей скорости не устраивают существующие модели байков и до какой скорости может разгоняться обычный с виду велосипед.

Первое знакомство с электробайками

Впервые я увидел электровелосипеды четыре года назад, в 2011 году, на веловыставке в Москве. Дорогие, неказистые, очень слабые по характеристикам, но чем-то они зацепили, появилось желание приобщиться к этому интересному виду транспорта. Изучение рынка на тот момент показало, что купить готовый электробайк с хорошими характеристиками по адекватной цене просто нереально. На рынке представлены либо очень маломощные и низкоскоростные велосипеды с небольшой батареей («слабый» во всех отношениях Китай или дорогая, гламурная, но такая же тихоходная Европа), либо супер-дорогие монстры, чья стоимость у производителя начинается от $10000 (Stealth Electric Bikes, Hi-Power Cycles), у которых тоже есть свои недостатки (неадекватно большой вес из-за тяжёлой рамы и тяжёлого мотор-колеса, слабая тяга «на низах» из за применения безредукторных моторов, небольшой запас хода).
Но настойчивое желание получить бесшумный, лёгкий и при этом мощный и резвый электровелосипед никуда не исчезло.


этому пришлось выбрать единственный доступный вариант — собирать байк самому из имеющихся на рынке комплектующих, как это делают многие другие энтузиасты.

Первый блин

Первым «комом» была попытка собрать байк на основе киловаттного мотор-колеса MagicPie со встроенным контроллером, купленного в комплекте с батареей 10 А*ч для установки на багажник. Собрать аппарат удалось, однако радость от нового велосипеда, разгонявшегося до невиданных 42 км/ч, была недолгой — багажник под весом батареи прожил ровно три дня, сломавшись на разбитых самарских дорогах. Управляемость и развесовка при таком расположении батареи также не сильно радовали. Тяжело приходилось и заднему колесу, которое и без того прибавило в весе — на скорости в очередной яме можно было легко пробить камеру или даже погнуть задний обод.

Мотор колесо своими руками

Поэтому при следующей доработке батарея с помощью самодельных креплений перекочевала на нижнюю трубу велосипеда. В результате развесовка получилась лучше, но выглядела конструкция страшно и неприлично. Для описания подобных творений очумелых ручек у отечественный байкостроителей появился даже устоявшийся термин — «шахид-дизайн».


На байке с более правильной развесовкой можно было уже довольно комфортно ездить, но стало понятно, что стандартной батареи 500 Вт*ч (50 В, 10 А*ч) для велосипеда мощности выше среднего хватает ненадолго — на электричестве можно доехать из пункта А в пункт Б, а обратно уже только на педалях. В итоге была куплена большая батарея 1000 Вт*ч (50 В, 20 А*ч), которая в передний треугольник рамы вроде бы влезала, но закрепить её пришлось изолентой 😉 Выглядело всё это вот так:

Мотор колесо своими руками

У получившегося монстра из-за ширины батареи даже не вращались педали.

Понятно, что оставлять это так было нельзя.

Нужно было что-то придумать с батареей — изменить её пространственную компоновку, чтобы за неё не задевали педали, и разобраться с её креплением, изготовив надёжный батарейный бокс. Для выполнения этой задачи после долгих поисков и отсеивания кандидатов был привлечён Александр Костюк — знакомый по велоклубу «ВелоСамара», который также глубоко проникся идеей проектирования электровелосипеда. Имея за плечами многолетний опыт конструирования и постройки различных прототипов всего что только движется, он взялся за задачу построения бокса. Решено было сделать его из листа АМг (сплав алюминия с магнием) толщиной 2.5 мм, соединив алюминиевыми уголками. Окраска бокса — порошковая. Также на велосипед был установлен ваттметр Cycle Analyst, позволяющий измерять кучу показателей, включая расход энергии в ватт-часах на километр. С таким прибором можно было больше не переживать, что батарея неожиданно разрядится в самый неподходящий момент — каждый потраченный ампер-час или ватт-час на счету. В итоге получился вот такой байк:


Мотор колесо своими руками

На таком аппарате с ёмкой, удобно и надёжно закреплённой батареей уже можно было спокойно кататься по городу без опасения, что что-нибудь отвалится в самый неподходящий момент. Да и выглядел велосипед уже поприличнее. Готов был байк аккурат под зиму 2012-2013 и отлично показал себя в зимних условиях, включая езду и в снегопады, и в метель и в морозы минус 35 градусов.

Только вперёд!

После успешного завершения постройки первого аппарата, возникла идея продолжить конструировать электробайки совместно с Сашей. У меня было некое видение того, что хочется, а у Саши — огромный конструкторский опыт.
Мы решили не останавливаться на достигнутом ещё и потому, что на российском рынке на тот момент просто не было электровелосипедов (да и сейчас нет), на которых нам самим хотелось бы ездить. Ниша достаточно мощных (сопоставимых по скорости и динамике со скутером или мотоциклом) и при этом лёгких и адекватных по цене электровелосипедов была совершенно пуста. А маломощные велосипеды меня и Сашу совершенно не интересовали, ведь нам, активным и молодым, хотелось кататься «с ветерком», чтобы байк при этом имел приличный пробег и надёжную конструкцию для езды по суровым российским дорогам и бездорожью.


Решено было создать универсальный электрокомплект, позволяющий превратить любой современный горный велосипед в электро. Горные велосипеды были выбраны в качестве базы не случайно — они очень популярны в России (количественно составляют основной класс велосипедов для взрослых), универсальны (позволяют ездить как по городу, так и по бездорожью) и надёжны. Также немаловажно, что детали и узлы горных велосипедов стандартизованы, что позволяет также стандартизовать электрокомплект.

Предстояло подобрать адекватные комплектующие для байка и решить ещё целый ряд инженерных задач:

  • Подобрать мотор, способный выдавать большую мощность и момент, при этом лёгкий.
  • Собрать компактную и лёгкую батарею достаточной ёмкости, способную держать большие токи.
  • Укрепить дропауты заднего колеса, чтобы в них не проворачивалась ось высокомоментного двигателя.
  • Разработать датчики срабатывания для гидравлических тормозов (серийные гидротормоза с датчиками только начинают появляться в продаже и имеют свои недостатки), ведь автоматическое отключение мотора при нажатии тормозов — одно из базовых стандартных требований для электробайков. А механические тормоза уже не подходят по характеристикам для безопасного торможения на тех скоростях, что мы намеревались достичь.
  • Продумать решения для питания передней фары и заднего фонаря (с сигналом) от бортового напряжения электровелосипеда, предусмотрев встроенный преобразователь постоянного тока.
  • Определиться с подходящими разъёмами (желательно герметичными), велокомпьютерами-ваттметрами, светотехникой и многим другим.

Но самое главное — необходимо было разработать универсальный бокс для батареи и контроллера для быстрого превращения обычного серийного велосипеда в электро. Собранная ранее металлическая коробка на эту роль не подходила, поскольку требовала слишком больших трудозатрат в изготовлении и была заточена по форме и размерам только под конкретную раму.

Итоговое решение должно было быть простым в монтаже, технологичным и дешёвым в изготовлении.

Вот один из первых этапов на этом пути, бокс построенный весной 2013 года:

Мотор колесо своими руками

Вот ещё один из промежуточных этапов:

Мотор колесо своими руками

Что получилось?

В результате года работы и экспериментов были разработаны по-настоящему универсальные и гораздо более эстетичные коробки, электрокомплекты и велосипеды на их базе:
Мотор колесо своими руками
Мотор колесо своими руками

Характеристики этих аппаратов:

  • скорость — до 63 км/ч;
  • мощность — до 2.5 кВт;
  • ёмкость батареи — до 1 кВт*ч;
  • дальность пробега — 40 км на максимальной скорости (63 км/ч) и до 100 км в режиме «эконом» (30 км/ч).

Вот видео передвижения мощного электровелосипеда в «городских джунглях»:

В условиях пересечённой местности байк тоже не пасует:

Велосипед или мотоцикл?

Байки на базе созданного электрокомплекта получились действительно очень резвые, способные полноценно двигаться в городском потоке на скорости 60 км/ч. По новым правилам, регламентирующим мощность и скорость электробайков, они формально не относятся ни к велосипедам (чья мощность на электротяге ограничена 250 Вт и 25 км/ч), ни даже к мопедам (чья конструктивная скорость не должна превышать 50 км/ч), а относятся к классу мотоциклов. Притом что внешний вид этого байка не вызывает особых подозрений — обычный с виду велосипед c коробкой внутри рамы. Да и вес аппарата не сильно увеличился, мощный электрокомплект добавляет всего 14 кг к велосипеду, в результате вес готового байка получается в районе 26 кг. Такой аппарат взрослому мужчине вполне по силам поднимать по лестнице, переносить через препятствия.

Так что получился функционально вполне себе мопед, но в велосипедной оболочке. В результате можно пользоваться преимуществом обоих видов транспорта: велосипеду у нас везде «зелёный свет» (пешеходные зоны, тротуары, наземные и подземные переходы, переходные эстакады, парки, тропинки да и просто бездорожье), при этом на дороге доступна скорость и динамика мопеда / скутера (при большей, чем у любого скутера или мотоцикла маневренности), что делает мощный электровелосипед в условиях реального трафика самым быстрым наземным городским транспортом.

И хотя мощность наших стандартных электрокомплектов и без того сравнима с мопедом, в качестве спортивного интереса и эксперимента (весьма не дешёвого, как оказалось после подсчёта стоимости всех комплектующих), были собраны тяжёлые и мощные электровелосипеды на базе специализированных пространственных рам от Qulbix:

Мотор колесо своими руками

и украинской «рамы Чоботара»:

Мотор колесо своими руками

Эти 6-10-киловаттные монстры способны развивать скорость уже до 90 км/ч, имея при этом динамику лёгкого мотоцикла. А при открытии полного газа с места привстают «на козла». Батарея 3 кВт*ч позволяет проехать 120 км на скорости 40 км/ч или 40 км на скорости 90 км/ч, благодаря чему можно использовать такой байк в качестве дальнобойного загородного транспорта и для езды по трассе.

Что дальше?

Конструкция электрокомплектов и электровелосипедов Electron Bikes продолжает постоянно улучшаться. Уже скоро будут готовы к промышленному серийному выпуску две модели велосипеда:

«Стандарт» (на базе обычной велосипедной рамы): мощность 2.2 кВт, ёмкость батареи 1 кВт*ч, скорость до 63 км/ч;

Мотор колесо своими руками

Электрочопперы (без педалей) «Электро-классик»: мощность 6 кВт, скорость до 85 км/ч, ёмкость двух съёмных батарей до 3 кВт*ч;

Мотор колесо своими руками

и «Электро-боббер».

Мотор колесо своими руками.

Последний также оборудован уникальной параллелограммной вилкой из титана, выпущенной ограниченным тиражом.

Немного об устройстве электровелосипеда

Под конец немного об устройстве и компонентах электровелосипеда, а также о технических сложностях, стоящих на пути создателей мощного байка.

Мотор колесо своими руками

Сложности переходного возраста

Задача создания мощного байка осложняется тем, что вся индустрия комплектующих для электровелосипедов в данное время рассчитана на маломощные аппараты. Класс мощных и скоростных электробайков, стоящих на полпути к мотоциклам, только формируется, поэтому создателям таких аппаратов на каждом шагу приходится что-то придумывать.

Батареи

Серийно выпускаемые батареи для электровелосипедов создаются, как правило, из элементов, не способных выдерживать большие токи. C-rating (отношение тока, которое способна выдавать батарея, к ёмкости батареи, выраженной в ампер-часах) серийных батарей, составленных, как правило, из литий-ионных ячеек, не более 1, в то время как под мощные велосипеды, которые мы создаём, требуются батареи с C-рейтингом минимум 2.5. То есть, например, при ёмкости 20 А*ч способные длительно выдавать ток 50 A. Что при 50-вольтовой батарее позволило бы выдавать мощность 2.5 кВт — интересующий нас минимум. В результате батареи приходится паять (а сейчас уже сваривать с помощью точечной сварки) самостоятельно из подходящих для этого элементов. Поиск и подбор подходящих по характеристикам элементов, их тестирование и отбраковка — также отдельная задача. Сейчас мы используем призматические элементы LiFePO4 и LiNiCo, позволяющие создать энергоёмкие и компактные батареи.

Моторы

Но самую большую проблему в задаче создания мощного и лёгкого электровелосипеда представляют собой моторы.
Серийные моторы либо слишком маломощные, либо тяжёлые, либо имеют низкий КПД, либо перегреваются, либо всё вместе сразу 😉

Моторы, применяемые для электровелосипедов, можно разделить на три класса, у каждого из которых есть свои недостатки применительно к мощным электробайкам.

Вело-компоненты

Велосипедные компоненты для заряженного байка также испытывают повышенные нагрузки и требуют внимательного подбора.

* * *

Таким образом, класс мощных электровелосипедов требует особого внимания к компонентам, многие из которых слишком дороги или требуют доработки. Специализированных компонентов для байков, стоящих посередине между велосипедом, мопедом и мотоциклом, либо не существует, либо они только начинают производиться. Это создаёт определённые сложности, но также и открывает простор для творчества.

Транспорт или развлечение?

Тем не менее, мы верим, что мощный электровелосипед — персональный транспорт будущего, который будет набирать популярность. Обладая всеми практическими достоинствами и скоростью скутера, он более универсальный и проходимый, маневренный, бесшумный, экологичный, дешёвый в эксплуатации. Электровелосипед можно хранить дома, для него не нужен гараж или охраняемая стоянка, как для мотоцикла или скутера, который опасно оставлять на ночь на улице.

Однако это не только практичный транспорт, это ещё и прекрасный способ проведения досуга: катание на скоростном бесшумном байке по пересечённой местности в режиме «эндуро» — нескончаемый источник адреналина. Также, в отличие от скутера или мотоцикла, который с наступлением холодов ставится в гараж, на электробайке можно безопасно кататься зимой — доступен большой выбор зимних шипованных велосипедных покрышек. Катание на Зимнем электробайке — это непередаваемые ощущения и совершенно новое развлечение, которое, я уверен, получит со временем заслуженную популярность.

image

PS. Фото байков и производственного процесса, не вошедшие в статью, можно посмотреть тут и тут.


Надеемся, что приведенная история не только вдохновит читателей обзавестись электровелосипедом, но и придаст уверенности в том, что создать собственный материальный продукт в свободное время — совершенно реально.

habr.com

Как сделать колесо мотор своими руками? Готовим инструменты

Для начала нам необходимо приобрести новое колесо диаметром от 20 до 28 дюймов. Можно использовать и старое, но в таком случае нужно убедится в его нормальной работе. В идеале колесо не должно образовывать «восьмерок» на ходу и быть хорошо отрегулированным на спицах.

Кроме этого, для создания самодельного мотор-колеса нужно приобрести аккумуляторную батарею. А для того чтобы можно было регулировать скорость движущегося велосипеда, нужно позаботится об установке специального регулятора скорости. Для хранения батареи покупается чехол или сумка, соответствующая размерам АКБ.

Еще одна немаловажная деталь – контроллер. Этот элемент представляет собой блок с множеством проводов, отвечающий за работу всего мотор-колеса. Контроллер являет мотор колесо своими рукамисобой плату, расположенную в металлическом (чаще всего алюминиевом) корпусе для защиты от негативного воздействия внешних факторов. Чаще всего он устанавливается на место крепежа фляги, непосредственно на раму.

Чтобы обеспечить бесперебойность работ всех электромеханизмов, следует заготовить комплект предохранителей и провода. Последние можно использовать от обычных аудиоколонок.

Принцип работы устройства

Перед тем как начать изготавливать колесо-мотор, нужно вникнуть в его принцип действия. Данный элемент представляет собой бесколлекторный электродвигатель постоянного тока. Колесо-мотор заспицовывается в велосипедный обод и может монтироваться как сзади, так и спереди (некоторые устанавливают его сразу на два колеса). По своей мощности электрические моторы, применяемые для таких байков, могут быть 250 Вт, 500 и даже 1000 Вт. Последний способен развить скорость до 60 километров в час. Правда, вряд ли это будет безопасно на горной трассе или в жилой зоне в черте города. Кстати, вне зависимости от мощности данные электромоторы не нуждаются в дополнительных настройках, регулировках и обслуживании.

Как сделать мотор колесо своими руками? Правила изготовления

  1. Обратите внимание на правильный и грамотный расчет узлов. При таких условиях колесо-мотор можно обезопасить от различных затиров и заклинивания. Если же этого не сделать, вы рискуете столкнуться с разрушением деталей, что может стать причиной поломки всего электровелосипеда.
  2. Если детали по размерам и характеристикам подходят от уже бывших в употреблении, не бойтесь их использовать в работе. Главное, чтобы они находились в исправном состоянии. Некоторые элементы, конечно, нельзя изготовить самостоятельно по ряду причин. Однако это может значительно повлиять на ваш бюджет расходов. К примеру, установка спиц на диск будет стоить порядка полутора-двух тысяч рублей.
    мотор колесо для автомобиля
  3. Поскольку мотор-колесо – это совокупность сложнейших электрических механизмов, необходимо позаботится о качественной изоляции проводов, соединяющих все эти детали. Также необходимо помнить, что велосипед (даже если он будет эксплуатироваться чисто для езды за покупками в магазин) должен быть хорошо защищен от воздействия таких факторов, как песок, дорожная пыль, соль, грязь и прочих вредоносных для электродвигателя элементов.
  4. Если мощность вашего байка будет составлять более 250 Вт, следует подумать о минимизации зазоров трущихся механизмов. Возможно в этом вам нужно будет использовать специальные инструменты.
  5. Для изготовления таких деталей, как втулка и вал, необходимо научится работать на токарном станке. Однозначно для одного электрического колеса приобретать его будет нецелесообразно. Поэтому в данном случае либо заказываем его аренду, либо нанимаем знакомого токаря. Последний вариант, как показывает практика, является более быстрым и безопасным.

Преимущества использования мотор-колеса на велосипедах

Во-первых, благодаря наличию электрического двигателя вы можете безо всяких физических усилий преодолевать большие расстояния, что особо важно для пожилых и неподготовленных людей. Во-вторых, для езды на таком транспорте, в отличие от мотоциклов и скутеров, не требуется прав определенной категории. А это значит, что управлять им может абсолютно каждый. В-третьих, за счет компактности велосипеда вы не будете стоять в постоянных пробках. К тому же для хранения такого транспорта не нужно приобретать отдельный гараж.

Обслуживание

Сделанное мотор-колесо своими руками (а точнее его электродвигатель), в отличие от двигателя внутреннего сгорания, практически никогда не нуждается в дополнительном обслуживании. А это значит, что затраты на его содержание будут минимальными.

комплект мотор колесо для велосипедаРаботает колесо-мотор Шкондина от энергии аккумулятора, который без подзарядки способен преодолеть до 30 километров пути. Но даже если АКБ разрядится, все равно вам не придется буксировать его – в любой момент этот транспорт может превратиться в обычный велосипед, движение которым осуществляется мускульным усилием.

Сколько стоит данная деталь в магазинах?

В среднем новый электродвигатель, устанавливаемый на обод велосипеда, можно приобрести по цене от 10 до 30 тысяч рублей (мотор-колесо для автомобиля стоит еще дороже). При этом стоит отметить, что стоимость может существенно варьироваться от мощности устройства. Комплект мотор-колесо для велосипеда может стоить и 3 тысячи, но его хватит лишь на 200 метров езды.колесо мотор шкондинаИзготавливая же его самостоятельно, вы можете сами подобрать для себя такое устройство, которое бы соответствовало вашим требованиям и характеристикам.

Итак, мы выяснили, как сделать мотор-колесо своими руками.

fb.ru

Я тоже внесу свою лепту.
1. Слишком много трансф-го железа в статоре. Из-за этого — ненужные затраты энергии на перемагничивание лишней массы металла.  Лучше всего сердечники в форме катушки от ниток. Малый диаметр внутри(определяется исходя из максимального диаметра укладки медной обмотки и не только), большой(соизмеримый с диаметром магнитов) — по краям.
2. Если толщина магнитов более 3 мм, то магнитный зазор должен быть 1 мм и более. Например, при толщине магнита 4 мм зазор составляет 1 — 1,5 мм; при толщине магнита 5 мм — уже около 3мм. Это ещё зависит от марки магнита. Это обусловлено тем, что  магнит, движущийся относительно катушки создаёт в сердечнике индукционные токи, которые его(сердечник) разогревают. И при малом зазоре, учитывая огромную силу магнитного поля постоянного редкоземельного магнита, эти токи достигают значительных величин. Они же  создают противоположное магнитное поле, оказывающее сопротивление вращению колеса: чем выше вращение тем больше сопротивление. Мои пояснения подтверждают тот факт, что после установки магнитопроводов у вас ток х.х. увеличился почти в два раза. Потому что магнитное поле магнитов усилилось в два раза. Хотя без сердечников было бы наоборот. Если после 1-2 минут работы на х.х. сердечники значительно разогрелись, значит так оно и есть — слишком маленький магнитный зазор. Выход: или увеличивать магнитный зазор, или установить сердечники из феррита или скручивать из более тонкой трансформаторной стали.
3. У вас слишком малая полюсность двигателя для прямого привода. При таком количестве магнитных полюсов(18P) и катушек(16N) двигатель получается слишком оборотистым и работает не в оптимальном режиме на старте с места и на малых оборотах. Если не менять количество магнитов, то можно повысить число катушек хотя бы в два раза. А ещё лучше сделать обмотку с частичным перекрытием катушек разных фаз. Например, для трехфазного двигателя с  конфигурацией  54N18P катушка одной фазы перекрывает на 1/3 катушку второй фазы, которая, в свою очередь, перекрывает на 1/3 катушку третьей фазы. Такой обмоткой вы увеличиваете полюсность двигателя даже при малом количестве магнитов, следовательно, уменьшаете пульсациии момента на колесе. Это как в шаговом двигателе перейти в режим дробного шага работы(полушаговый, микрошаговый). Ещё  важный момент — уменьшаете время включения одной фазы к батарее, тем самым уменьшаете вероятность вхождения железа в насыщение. Это когда при повышении тока магнитное поле катушек уже не увеличивается.
4. Эволюционируем дальше. При неизменном количестве магнитов вместо отдельно взятых сердечников я бы установил из нескольких слоёв тр-й стали центральное кольцо толщиной 3-5мм шириной — чуть больше диаметра магнитов. На кольцо по обе стороны наклеил бы плоские катушки по трёхфазной схеме 54N18P с перекрытием. Катушки напротив по обе стороны кольца соединяются последовательно. Такой конструкцией "убиваем  нескольких зайцев": 1) магнитный зазор определяется толщиной медной катушки и уж точно будет более 1 мм; важный момент — по отношению к медной обмотке зазор может быть минимальным, если катушка мотается многожильным проводом с электрической изоляцией каждой жилы; 2) отсутствует магнитное залипание, обесточенное колесо проворачивается равномерно без пульсирующего сопротивления; 3) такой сердечник легче собрать; 4) вся конструкция будет легче…
5. Если магниты толщиной 5мм или более, т.е. очень сильные, то лучше вообще собирать систему катушек без железного сердечника. Только, думаю, в этом случае количества магнитов маловато. Лучше бы взять их по секторальной ширине меньше, но больше по количеству. Например, для такого диаметра двигателя — конфигурация 90N30P, 120N40P и даже больше. Обмотка с перекрытием или распределённая(можно намотать волновую) в данном случае(да и в предыдущем пункте) позволяет повысить коэффициент заполнения медью, что увеличивает удельную мощность двигателя. Такой тип двигателя будет иметь самый низкий ток х.х. Число витков в катушках при таком их количестве — минимально. Например, при 120N — 2-4 витка. При такой силе магнитов обязательно использование многожильного провода. Сам делаю подобный движок. Надо, наверное, открыть свою тему.

electrotransport.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.