На какую максимальную глубину погружался человек


  1. На какую глубину может погрузиться человек без аппарата, на одной задержке дыхания?
  2. Когда впервые проводились водолазные работы на Байкале?
  3. Сколько времени может работать под водой водолаз?
  4. В чем преимущество водолаза в скафандре перед аквалангистом?
  5. Когда впервые использован на Байкале акваланг для исследования?
  6. С помощью каких аппаратов и когда совершены глубоководные погружения в Байкале?
  7. Каковы основные технические и эксплуатационные характеристики подводных аппаратов, совершивших погружение на Байкале?
  8. Сколько человек могло погружаться в глубоководных аппаратах?
  9. На какую глубину погружался человек в Байкале?
  10. Что нового дали ученым исследования с помощью глубоководных аппаратов?
  11. Когда были сделаны первые подводные фотоснимки в Байкале?
  12. Кто сделал первые подводные цветные снимки в Байкале?
  13. Может ли цветная фотография воспроизвести истинные цвета подводных объектов?
  14. Как получают фотоснимки дна Байкала?
  15. Для чего используют подводное телевидение?
  16. Что такое кессонная болезнь?
  17. Почему водолазы не дышат чистым кислородом?
  18. Что такое азотный наркоз?

685. На какую глубину может погрузиться человек без аппарата, на одной задержке дыхания?

Собирательницы жемчужных раковин японские женщины без аппаратов ныряют на глубину до 15—20 м. Туземцы с Богамских островов также без дыхательных аппаратов, только в очках, ныряют за раковинами до сот­ни раз в день и так в течение всей недели на глубину до 43 м.

Жак Майоль, 19-летний француз, нырнул на глубину 60 м, позднее он же совершил погружение до 100-метро­вой глубины.

Энцо Майорка, сицилийский спортсмен, погрузился до 64 м, а американский моряк Р. А. Крафт на 75-метровую глубину. Хорошо тренированные  искатели  жемчуга и спортсмены-ныряльщики могут находиться под водой на задержке дыхания до 2,5—3 мин, большинство же людей проводят под водой не более 1 мин.

686. Когда впервые проводились водолазные работы на Байкале?

В начале нашего века, когда строилась Транссибир­ская железная дорога, портовые и берегоукрепительные сооружения.

687. Сколько времени может работать под водой водолаз?

Водолаз, проработавший 2 ч. на глубине 30 м, должен потратить еще 2 ч 12 мин для подъема на поверхность. При трехчасовом пребывании на этой глубине на декомпрессию потребуется более 19 ч. Водолазы, живущие в подводных домах, могут работать под водой несколько не­дель подряд, поскольку их кровь насыщается газами в течение первых суток и время декомпрессии больше не увеличивается, независимо от того, сколько они находят­ся под водой.


688. В чем преимущество водолаза в скафандре перед аквалангистом?

В большей безопасности и в наличии телефонной связи с поверхностью. Водолаз в скафандре может ра­ботать в течение нескольких часов на глубине 60 м, то есть на глубине, недоступной ныряльщику без акваланга со специальной дыхательной смесью. Зато аквалангисты обладают значительно большей подвижностью, чем водо­лазы. Они совершали погружения до 119 м, что недоступ­но водолазу в легком скафандре.

На Байкале в 1975 г. в бухте Б. Коты аквалангисты Н. С. Резников, А. М. Мурахвери и И. П. Сударкин с аквалангами марки «Украина» на сжатом воздухе спус­тились на 93 м. и взяли пробы грунта. При всплытии они на глубине 10—12 м. делали остановку для деком­прессии в подводном убежище «Спрут». В 1968 г. амери­канские аквалангисты совершили выход из подводной лодки «Дип Дайвер» с гелиевой дыхательной смесью на глубине 213 м. По последним сведениям, аквалангисты перекрыли и эту глубину. Как сообщает исследователь подводных глубин Р. Л. Бенц, аквалангисты с гелиово-кислородной дыхательной смесью выходили из глубоко­водного водолазного комплекса МК-2 на глубине 335 м. и работали там продолжительное время. В настоящее время испытываются акваланги с замкнутым циклом, которые позволят дышать безопасными смесями на глу­бинах более 300 м.


В последние годы рекорд проникновения аквалангис­тов в морские глубины составляет 565 м. А в барокамере аквалангисты сумели выдержать барометрическое давле­ние 152 атм., что соответствует давлению на глубине 1520 м. В опытах на животных удается успешно «погру­зить» их на глубину 2700 м. Вероятно, и человеческий организм может перенести еще большее барометрическое давление.

689. Когда впервые использован на Байкале акваланг для исследования?

Легководолазные костюмы использовались для изуче­ния переноса береговых наносов на Байкале с 1953 г. С начала 1970-х гг. проводятся исследования фауны (бен­тоса) и биоценозов, а также изучение устройств по выбросу промстоков БЦБК в Байкал. Установлено, в частности, что оголовок трубопровода, через который сбрасываются в озеро промстоки, выполнен не по проекту, без рассеивающих устройств, которые должны были обес­печить быстрое их разбавление и смешивание с боль­шим объемом воды.

690. С помощью каких аппаратов и когда совершены глубоководные погружения в Байкале?

Погружения совершались в автономных глубоковод­ных аппаратах «Пайсис-VII» и «Пайсис-XI» канадского производства. Эти аппараты способны погружаться на глубину до 2000 м. В 1977 г. исследовались подводные склоны в южной котловине Байкала вдоль северо-запад­ного берега в Лиственичном заливе и в бухте Коты. В это же время осуществлено и рекордное для Байкала погружение на глубину 1410 м. Итогом явились интерес­ные научные данные и материалы, которые раньше по­лучить было невозможно.


691. Каковы основные технические и эксплуатационные характеристики подводных аппаратов, совершивших погружение на Байкале?

Аппараты «Пайсис» имели сравнительно небольшие габариты: ширина 3,6, высота и длина 4 м, вес около 11 т. При таких размерах и весе аппараты легко транс­портировать самолетом в любой нужный район. Их энер­гообеспечение производится от аккумуляторных батарей, смонтированных на наружной оболочке. Каждый аппарат снабжен двумя четырехлопастными движителями диа­метром около 30 см, прикрепленными с боков и приводи­мыми в движение электромоторами постоянного тока по 3 л. с. каждый. При наклоне продольной оси движителей аппарат погружается или всплывает. При их работе в го­ризонтальном положении происходит его линейное перемещение, а при вращении движителей в противоположном друг от друга направлении аппарат поворачивается на месте.

Глубоководные аппараты «Пайсис» — это, по суще­ству, миниатюрные подводные лодки. Они плавают со скоростью до 4 узлов и могут находиться в подводных условиях до 72 ч. Аппараты «Пайсис», в отличие от дру­гих глубоководных аппаратов, оснащены наружными ма­нипуляторами, которые позволяют отбирать пробы грун­та донных отложений и биологические объекты и поме­щать их в магазин для хранения, оборудованный на на­ружной обшивке. Аппараты оснащены телеприемной и киносъемной аппаратурой, позволившей во время по­гружения, отснять фильм о виденном.


692. Сколько человек могло погружаться в глубоководных аппаратах?

В морских условиях возможно погружение 3 чело­век — 2 пилотов и наблюдателя с полным набором ап­паратуры для наблюдений и жизнеобеспечения. В прес­ной воде, плотность которой меньше морской, для со­хранения экипажа из 3 человек и обеспечения нулевой, плавучести пришлось отказаться от некоторого оборудо­вания и снять часть аппаратуры, главным образом ис­следовательской.

693. На какую глубину погружался человек в Байкале?

В 1977 г. акванавты Института океанологии им. П. П. Ширшова АН СССР и Лимнологического института СО АН СССР в специальном глубоководном аппарате со­вершили в Байкале погружение на глубину 1410 м. Все­го на Байкале совершено 42 погружения, из них 5 до глубины свыше 1000 м.

694. Что нового дали ученым исследования с помощью глубоководных аппаратов?

Углубились наши знания о пределах распростране­ния организмов в Байкале. В частности, до глубины 80 м. и более встречены живые, прикрепленные ко дну водоросли. До этого находки только планктонных водо­рослей рассматривались как случайное попадание при вертикальном перемешивании воды или осаждении от­мирающих водорослей. На глубинах до 1000 м. встре­чены простейшие колониальные организмы — губки Baicalospongia и Swarchcwskia. Обычно эти организмы встречались в мелководной зоне. Было известно, что живут они постоянно в симбиозе с фотосинтезирующими водорослями, которые им придают зеленую окраску, и поэтому считалось, что на больших глубинах губки без водорослей жить не могут.


азалось, что губки на больших глубинах живут без водорослей-симбионтов, хо­рошо себя чувствуют и размножаются. При погружении на глубину ученые установили неоднородность распре­деления в водной толще планктонных организмов. Вы­яснилось также, что голомянка при погружении или всплытии на определенных глубинах делает остановки и как бы впадает в сонное состояние, а подъем к по­верхности или опускание на глубину осуществляет по кратчайшему пути, то есть вертикально.

Любопытно, что поверхностный слой донных отло­жений на глубине имеет волнистый характер, несколько напоминающий рябь на песке мелководья, хотя течения там так малы и ряби образовать не могут. Важным было наблюдение, что бычки (Procotlus major) на больших глубинах прячутся в вырытые ими норы, что глубоковод­ные организмы в Байкале не светятся и др.

695. Когда были сделаны первые подводные фотоснимки в Байкале?

На Байкале подводную фотографию начали делать с организацией исследований с помощью аквалангов. Первые фотографии подводных сюжетов были сделаны в 1961 г. аквалангистами-любителями клуба «Альбатрос» (Иркутск). В 1963г. студия «Киевнаучфильм» сделала подводные киносъемки о жизни байкальских организ­мов.

696. Кто сделал первые подводные цветные снимки в Байкале?

Свердловская киностудия в 1975 г. при съемке пер­вого  подводного  фильма.

697. Может ли цветная фотография воспроизвести истинные цвета подводных объектов?

Это возможно подбором соответствующих голубых и зеленых фильтров. В чистой мелкой воде глаз человека автоматически корректирует цветовые оттенки, а на фо­топленке все предметы приобретают зелено-голубую ок­раску. Для получения истинных цветов, лучше всего пользоваться искусственными источниками света вблизи объекта.


698. Как получают фотоснимки дна Байкала?

Различными способами, в зависимости от задач, сто­ящих перед исследователями, — фотоаппаратами, за­ключенными в специальный бокс; с помощью телевизи­онной установки с телеэкрана; с борта исследователь­ского судна или лодки обычным фотоаппаратом; с са­молета, оборудованного специальными аппаратами; с искусственных  спутников  Земли.

699. Для чего используют подводное телевидение?

Оно применяется для осмотра дна подводных частей корабля, а также для биологических и геологических исследований. Биологи изучают распределение и численность бентосных животных, живущих на поверхности дна; геоморфологи и геологи — материал, которым сложены донные отложения, структуру обнаженных горных пород, движение донных наносов и др. На Байкале подводная телевизионная установка впервые использовалась в 1965 г. В последующие годы она широко используется гидробиологами, ихтиологами и маммологами для изучения жизни водных животных.

700. Что такое кессонная болезнь?

Кессонная болезнь — это болезнь декомпрессии (снижение давления).


а возникает при дегазации тканей организма, насыщенных азотом. Для того, чтобы водолаз мог работать под водой, он должен дышать воздухом, находящимся под давлением, соответствующим глубине по­гружения. При этом кислород расходуется на физиологические процессы в организме, а азот остается растворенным в крови и тканях. Если водолаз поднимается на поверхность, не пройдя всех требуемых стадий декомпрессии, то при быстром изменении наружного давления растворенный азот в крови и тканях превращается в газообразный, происходит дегазация, при которой обра­зуются пузырьки азота. Они закупоривают кровеносные сосуды, что вызывает боли, параличи, потерю сознания  и даже смерть.

701. Почему водолазы не дышат чистым кислородом?

Кислород под давлением оказывает отрицательное воздействие на центральную нервную систему челове­ка. Симптомами кислородного отравления являются су­дороги, головокружение и тошнота, возможна смерть. Симптомы кислородного отравления напоминают поведе­ние водных животных при повышении давления. В чем причина такого внешнего сходства — пока не выяснено.

702. Что такое азотный наркоз?

Это нарушение мозговой и мыслительной деятельно­сти под влиянием высоких концентраций азота в крови. Азотный наркоз возникает обычно при дыхании сжатым воздухом на глубине более 90 м. При азотном наркозе мысли водолаза становятся бессвязными, а самоконтроль нарушается. При увеличении глубины, а следовательно и давления может наступить потеря сознания и даже смерть.


Чтобы избежать азотного наркоза на больших глубинах, аквалангисты разработали специальные гелиево-кислородные дыхательные смеси. Гелий менее растворим, чем азот, в жидких тканях (в плазме крови) и особенно и жирах. При насыщении организма газами гелия он по­глощается в 2,5 раза меньше, чем азот, особенно в белом веществе мозга. Выделение же гелия из организма после длительного пребывания под давлением в 2 раза быст­рее, чем азота. Симптомы кессонных заболеваний при дыхании смесью гелия с кислородом протекают также легче.

Гелий почти не оказывает вредного  наркотического действия, которым обладает азот под повышенным дав­лением, что позволило значительно увеличить предель­ную глубину погружения водолазов. При давлении, со­ответствующем  глубине  30 м,  воздух становится  более плотным, и сам процесс дыхания стоит ныряльщику боль­ших усилий. На глубине более 90 м. дыхание отнимает у человека так много сил, что какая-либо полезная ра­бота становится уже почти невозможной. Для того, чтобы сделать дыхательную смесь менее плотной, азот заменя­ют гелием. Однако гелий обладает высокой теплопровод­ностью, поэтому при работе в холодной воде водолаз теряет много тепла. Кроме того, гелий настолько изме­няет голос человека, что радиотелефонная связь становится почти невозможной, причем с глубиной, то есть с повышением давления дыхательной смеси, неразборчи­вость речи увеличивается.

 

Источник: глава «Человек на Байкале» из книги академика Галазия Г. И. «Байкал в вопросах и ответах» (1989)

pro-baikal.ru

Самое глубоководное погружение человека


глубоководное погружение

Долгое время рекордсменом в области фридайвинга выступал французский спортсмен Лоик Леферм. В 2002 году ему удалось осуществить глубоководное погружение на 162 метра. Многие ныряльщики пытались улучшить этот показатель, однако погибали в морской пучине. В 2004 году жертвой собственного тщеславия стал сам Леферм. В ходе тренировочного заплыва в океанической впадине Вильфранш-сюр-Мер он погрузился на 171 метр. Однако подняться на поверхность спортсмену так и не удалось.

Последнее рекордное глубоководное погружение совершил австрийский фридайвер Герберт Ницш. Ему удалось опуститься на 214 метров без кислородного баллона. Таким образом, достижение Лоика Леферма осталось в прошлом.

Рекордное глубоководное погружение среди женщин

самое глубоководное погружение

Несколько рекордов среди женщин установила французская спортсменка Одри Местре. 29 мая 1997 года она осуществила погружение на целых 80 метров на одной задержке дыхания, без баллона с воздухом. Уже через год Одри побила собственный рекорд, опустившись в морскую пучину на 115 метров. В 2001-м спортсменка погрузилась на целых 130 метров. Указанный рекорд, который имеет статус мирового среди женщин, закреплен за Одри по сей день.

12 октября 2002 года Местре совершила свою последнюю попытку в жизни, погрузившись без снаряжения на 171 метр у берегов Доминиканской Республики. Спортсменка использовала лишь специальный груз, не имея при себе кислородных баллонов. Подъем должен был осуществляться с помощью воздушного купола. Однако последний оказался не заправлен. Через 8 минут после того, как стартовало глубоководное погружение, тело Одри было доставлено на поверхность аквалангистами. В качестве официальной причины смерти спортсменки было отмечено возникновение проблем с оборудованием для подъема на поверхность.

Рекордное погружение с аквалангом

глубоководные погружения с аквалангом

Теперь поговорим про глубоководные погружения с аквалангом. Самое значимое из них осуществил французский дайвер Паскаль Бернабе. Летом 2005 года ему удалось опуститься в морскую пучину на 330 метров. Хотя изначально планировалось покорить глубину в 320 метров. Столь значимый рекорд состоялся в результате небольшого казуса. В ходе спуска у Паскаля растянулась веревка, что и позволило заплыть на 10 лишних метров в глубину.

Дайверу удалось успешно подняться на поверхность. Всплытие продолжалось долгих 9 часов. Причиной столь медленного подъема стал высокий риск развития кессонной болезни, что могло привести к остановке дыхания и повреждению кровеносных сосудов. Стоит заметить, что для установления рекорда Паскалю Бернабе пришлось провести целых 3 года в постоянных тренировках.

Рекордное погружение в батискафе

глубоководное погружение человека

23 января 1960 года ученые Дональд Уолш и Жак Пиккард установили рекорд по погружению на дно океана в пилотируемом аппарате. Находясь на борту небольшой подлодки Trieste, исследователи достигли дна Мариинской впадины, оказавшись на глубине 10 898 метров.

Самое глубоководное погружение в пилотируемом человеком батискафе было осуществлено благодаря строительству аппарата Deepsea Challenger, на что у конструкторов ушло долгих 8 лет. Эта мини-подлодка представляет обтекаемую капсулу весом более 10 тонн и с толщиной стен 6,4 см. Примечательно, что до введения в эксплуатацию батискаф несколько раз тестировали давлением в 1160 атмосфер, что выше показателя, который должен был воздействовать на стенки аппарата на дне океана.

В 2012 году известный американский кинорежиссер Джеймс Кэмерон, пилотируя мини-подлодку Deepsea Challenger, покорил предыдущий рекорд, установленный на аппарате Trieste, и даже улучшил его, погрузившись в Мариинскую впадину на 11 км.

fb.ru

Кто на новенького?

Зачастую решение нырнуть на глубину к туристам приходит спонтанно. Например, когда они оказываются в городе, чтобы купить сувениры, и к ним подходят улыбчивые продавцы подводных экскурсий и предлагают осуществить незабываемое путешествие в морские глубины по смешным ценам. Однако покупать сертификат на погружение в случайной экскурсионной лавочке – большая ошибка. Нормальные дайвинг-центры (которые относятся к наиболее известным дайверским ассоциациям – PADI, PDA, CMAS) с такими посредниками не связываются. Низкая цена экскурсии тоже должна насторожить. Третий момент – при заключении договора требуется заполнить специальную анкету, позволяющую выяснить, нет ли у человека каких-то заболеваний, при которых погружение может быть опасным (в первую очередь это касается всех острых недугов и большинства тяжелых хронических заболеваний, особенно легочных и сердечно-сосудистых патологий, а также врожденных пороков сердца).

Первое погружение по всем правилам должно проходить в так называемой «закрытой» воде: бассейне или бухте, а не в море («открытой» воде). Также есть четкое правило безопасности для новичков: максимум два клиента на одного инструктора. На деле же все зачастую происходит совсем не так: туристов сразу вывозят в море, при этом бот бывает переполнен, не редкость, когда на 10 неопытных дайверов – всего 1–2 инструктора.

Не зная броду, не суйся в воду

Погружаться в первый раз разрешено на глубину не более 10–12 метров, поэтому места для дайвинга в нормальных центрах выбирают очень тщательно и так, чтобы там не было никаких подводных течений. У новичков при погружении на глубину больше 40 метров частенько проявляется наркотическое действие азота (так называемое «глубинное опьянение»). Возникшая эйфория часто толкает их на неадекватное поведение и, в частности, заставляет всплывать резко, без остановки. А делать этого нельзя ни в коем случае.

При всплытии даже с небольшой глубины важно не превышать скорость подъема 10–18 м в минуту. Если нарушить режим декомпрессии (то есть всплытия), может развиться декомпрессионная (или кессонная) болезнь. Суть ее вот в чем. По мере погружения в кровь дайвера проникает азот и растворяется там. А при быстром всплытии (под большим давлением и при значительном потреблении воздуха) этот газ не успевает выводиться из организма. В итоге в крови и тканях образуются пузырьки, разрушающе действующие на организм. При легкой степени кессонной болезни чаще всего возникают боли в суставах и мышцах, чувство тяжести в сердце, повышенной усталости. При тяжелых формах возможны поражения легочной ткани, параличи и другие неврологические нарушения, вплоть до летального исхода.

Интенсивность газообразования зависит не только от режима всплытия, но и от индивидуальной устойчивости человека к декомпрессионной болезни. Риск развития недуга прямо пропорционален времени, проведенному под водой и на глубине. Так, при 6‑часовом пребывании на глубине 7–8 м и быстром всплытии заболевают 5% людей; с 16 м – каждый второй; с глубины 24 м – практически каждый человек.

И молимся, чтобы страховка не подвела

Чтобы погружение было успешным, дайвер должен не только заранее продумать выбор режима всплытия (и точно соблюдать его под водой), но и быть на тот момент абсолютно здоровым, отдохнувшим. Также он не должен курить и принимать алкоголь и лекарства (особенно транквилизаторы) ни до, ни после всплытия. Первое время надо также избегать тяжелой физической нагрузки – например, не стоит идти вечером заниматься в тренажерный зал.

Также опасно летать самолетом ранее чем через сутки после погружения (и через 72 часа после многократных погружений в течение одного дня). Это усугубляет развитие декомпрессионной болезни.

На всякий случай нужно узнать, где находится ближайшая рекомпрессионная барокамера, которая необходима для лечения кессонной болезни. Но поскольку 1 час работы этой установки стоит от $700 до 2500, а при тяжелых формах болезни может понадобиться непрерывное лечение в течение нескольких суток, то оптимальный выход для человека, планирующего занятия дайвингом, – приобрести специальную медицинскую страховку. На срок до 20 дней ее стоимость будет около 30 евро, а на год она обойдется примерно в сотню евро.

Дышите глубже!

Если у пострадавшего развилась кессонная болезнь, лучше приступать к лечению как можно раньше, а не ждать до приезда на родину. Тем более что специальных рекомпрессионных барокамер, в которых можно устанавливать особый режим, в обычных российских медицинских учреждениях сегодня, к сожалению, нет. Последний раз такая барокамера работала в РНЦХ РАМН в 90‑х годах, но в связи с большой дороговизной ее использования она уже не функционирует.

Поэтому такие больные могут лечиться только в кислородных барокамерах. Метод гипербарической оксигенотерапии (ГБО) – не самый эффективный в таком случае, но это лучше, чем ничего.

www.aif.ru

Ныряние с аквалангом

Пытаясь обеспечить себе возможность долгого пребывания под водой, люди стали придумывать всяческие приспособления. На сегодня наиболее распространенным является оборудование, которое в русскоговорящих странах именуют аквалангом. На самом деле «Aqualung» — это название фирмы и выпускаемого ею снаряжения. Само же оборудование для ныряния в западном мире обозначают термином «СКУБА» («SCUBA»). Это аббревиатура английской фразы «автономный аппарат для подводного дыхания» («self-contained underwater breathing apparatus»).

Первые документальные свидетельства об изобретении подводных дыхательных устройств датируются примерно серединой 19 века, хотя чертежи подобных приспособлений создавал еще Леонардо да Винчи. Акваланг в том виде, в каком мы его знаем сегодня, придумали в 1943 году французы Жак-Ив Кусто и Эмиль Ганьян. Это ими созданная фирма называется «Aqualung». С тех пор мастерами подводного плавания был установлен не один рекорд погружения с аквалангом.

Автором последнего на сегодня достижения стал египтянин Ахмед Габр. В сентябре 2014 года ему удалось достичь отметки 332,4 м ниже поверхности воды. Прошлый рекорд был превзойден чуть больше чем на 2,5 м. Вся процедура заняла у египтянина 14 часов. Подавляющая часть этого времени была потрачена на безопасный медленный подъем.

Под водой без акваланга

Дышать под водой без акваланга тоже можно. Еще в древности люди использовали устройство, которое принято называть водолазным колоколом. Это некая перевернутая пустая емкость, например бочка или ведро. При вертикальном погружении давление внутри такого сосуда соответствует давлению окружающей его воды, а образующееся при этом воздушное пространство позволяет какое-то время дышать. Считается, что при помощи такого приспособления проводил подводную разведку еще Александр Македонский в 4 веке до н.э. С древнейших времен знали, как дышать под водой с помощью подобного сосуда, и ловцы жемчуга, и искатели сокровищ с затонувших кораблей.

Водолазные колокола, только уже специально созданные, используют до сих пор. Кроме того, ученые продолжают искать новые способы погружения без акваланга: разрабатывают искусственные жабры, придумывают материалы и устройства, способные выкачивать кислород из воды. Тем временем есть много любителей подводного плавания, которые практикуют погружение без каких-либо вспомогательных средств — фридайвинг (от англ. free — свободно, dive — нырять).

Фридайвинг и его герои

Главное умение фридайверов — длительная задержка дыхания. Тренируя свой организм, они добиваются того, что могут нырять, обходясь без воздуха, на невероятные глубины.

Всемирно известными фридайверами, показавшими миру, на сколько метров можно углубиться, всего лишь задержав дыхание, были итальянец Энцо Майорка и француз Жак Майоль. Первый из них в 1960-х годах опроверг распространенную тогда теорию, что человеческий организм не может существовать в морской пучине. Физиологи были уверены: давление на отметке 50 м ниже поверхности воды разрушит грудную клетку и разорвет легкие. Майорка покорил глубину 51 м, открыв себе и другим ныряльщикам новые горизонты.

Майоль первым из фридайверов опустился на 100 м. Ученые взялись исследовать его организм, чтобы понять, как такое возможно. Однако выяснили только то, что природные данные француза не могли позволить ему нырнуть глубже 45 м. А Майоль продолжал уходить все глубже. Свой новый рекорд погружения он установил в 56 лет, достигнув — 105 м.

В истории свободного ныряния было еще немало героев, доказавших, что можно достичь многого из официально недостижимого. Сегодня существует целый ряд дисциплин во фридайвинге, рекордами отмечена каждая из них.

Рекорды свободного погружения

Самой сложной дисциплиной в свободном нырянии считается «Постоянный вес без ласт». Фридайвер задерживает дыхание, уходит на глубину и затем поднимается на поверхность без помощи каких-либо вспомогательных средств (груза, троса и т. п.), используя только собственный вес и силу своих мышц. Эта дисциплина требует от ныряльщика отточенной координации движений и полного контроля над собственным телом. Необходимо точно знать, как долго получится задержать дыхание, чтобы вовремя остановиться и успеть вернуться, прежде чем кислородное голодание доведет до обморока. Мировой рекорд погружения в «Постоянном весе без ласт» среди мужчин принадлежит новозеландцу Уильяму Трабриджу. В 2010 году он нырнул на 101 м. Среди женщин в этой дисциплине, как и в ряде других, нет равных россиянке Наталье Молчановой. В 2015 году она преодолела отметку 71 м.

Почти во всех дисциплинах фридайвинга отсчитывается дистанция, которую удалось преодолеть на одном вдохе в глубину или в длину. И только в «Статическом апноэ» засекается время нахождения под водой. В этой дисциплине практикуется так называемая гиперинфляция легких чистым кислородом, когда спортсмен перед нырком делает несколько глубоких и быстрых вдохов-выдохов. После погружения фридайвер замирает, чтобы расходовать кислород как можно меньше. На сегодня мировой рекорд по задержке дыхания под водой в «Статическом апноэ» принадлежит испанцу Алексу Сегуре. В 2016 году ему удалось продержаться на одном вдохе 24 минуты 03 секунды. Среди женщин максимальное время в этой дисциплине показала словенка Бранко Петрович в 2013 году: 10 минут 18 секунд.

sportotip.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.